[1]

Zhang C, Liu S, Wu S, Jin S, Reis S, et al. 2019. Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China. Resources, Conservation and Recycling 144:65−73

doi: 10.1016/j.resconrec.2019.01.011
[2]

Jin X, Bai Z, Oenema O, Winiwarter W, Velthof G, et al. 2020. Spatial planning needed to drastically reduce nitrogen and phosphorus surpluses in China's agriculture. Environmental Science & Technology 54:11894−904

doi: 10.1021/acs.est.0c00781
[3]

Bai Z, Schmidt-Traub G, Xu J, Liu L, Jin X, et al. 2020. A food system revolution for China in the post-pandemic world. Resources, Environment and Sustainability 2:100013

doi: 10.1016/j.resenv.2020.100013
[4]

Yu C, Huang X, Chen H, Godfray HCJ, Wright JS, et al. 2019. Managing nitrogen to restore water quality in China. Nature 567:516−20

doi: 10.1038/s41586-019-1001-1
[5]

Bai Z, Jin S, Wu Y, Ermgassen Ez, Oenema O, et al. 2019. China’s pig relocation in balance. Nature Sustainability 2:888

doi: 10.1038/s41893-019-0391-2
[6]

Zhao ZQ, Bai ZH, Winiwarter W, Kiesewetter G, Heyes C, et al. 2017. Mitigating ammonia emission from agriculture reduces PM2.5 pollution in the Hai River Basin in China. Science of the Total Environment 609:1152−60

doi: 10.1016/j.scitotenv.2017.07.240
[7]

Liu M, Huang X, Song Y, Tang J, Cao J, et al. 2019. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proceedings of the National Academy of Sciences of the United States of America 116:7760−5

doi: 10.1073/pnas.1814880116
[8]

The Ministry of Agriculture and Rural Affairs (MARA). 2020. http://www.gov.cn/zhengce/zhengceku/2020-06/17/content_5520019.htm

[9]

Schmidt-Traub G, Locke H, Gao J, Ouyang Z, Adams J, et al. 2020. Integrating climate, biodiversity, and sustainable land-use strategies: innovations from China. National Science Review 0:1−5

doi: 10.1093/nsr/nwaa139
[10]

Yan J, de Buisonjé FE, Melse RW. 2017. Livestock manure treatment technology of the Netherlands and situation of China. Report 1048. https://library.wur.nl/WebQuery/wurpubs/fulltext/423982

[11]

Willems J, van Grinsven HJM, Jacobsen BH, Jensen T, Dalgaard T, et al. 2016. Why Danish pig farms have far more land and pigs than Dutch farms? Implications for feed supply, manure recycling and production costs. Agricultural Systems 144:122−32

doi: 10.1016/j.agsy.2016.02.002
[12]

Stokstad E. 2019. Nitrogen crisis threatens Dutch environment−and economy. Science 366:1180−1

doi: 10.1126/science.366.6470.1180
[13]

Liu Z, Wang X, Wang F, Bai Z, Chadwick D, et al. 2020. The progress of composting technologies from static heap to intelligent reactor: Benefits and limitations. Journal of Cleaner Production 270

doi: 10.1016/j.jclepro.2020.122328
[14]

Yan J, Wang S, Wu L, Li S, Li H, et al. 2020. Long-term ammonia gas biofiltration through simultaneous nitrification, anammox and denitrification process with limited N2O emission and negligible leachate production. Journal of Cleaner Production 270:122406

doi: 10.1016/j.jclepro.2020.122406
[15]

Yoon H, Song MJ, Kim DD, Sabba F, Yoon S. 2019. A serial biofiltration system for effective removal of low-concentration nitrous oxide in oxic gas streams: mathematical modeling of reactor performance and experimental validation. Environmental Science & Technology 53:2063−74

doi: 10.1021/acs.est.8b05924
[16]

Shi L, Hu Y, Xie S, Wu G, Hu Z, et al. 2018. Recovery of nutrients and volatile fatty acids from pig manure hydrolysate using two-stage bipolar membrane electrodialysis. Chemical Engineering Journal 334:134−42

doi: 10.1016/j.cej.2017.10.010
[17]

Hoeksma P, de Buisonjé FE. 2015. Production of mineral concentrates from animal manure using reverse osmosis; Monitoring of pilot plants in 2012−2014. Livestock Research Report 858, Wageningen UR (University Research centre) Livestock Research, Wageningen

[18]

Newton L, Sheppard C, Watson DW, Burtle G, Robert D. 2005. Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. Animal and Poultry Waste Management Center, North Carolina State University, Raleigh, NC, 17. https://www.researchgate.net/publication/267377822

[19]

Liu C, Yao H, Chapman SJ, Su J, Wang C. 2020. Changes in gut bacterial communities and the incidence of antibiotic resistance genes during degradation of antibiotics by black soldier fly larvae. Environment International 142:105834

doi: 10.1016/j.envint.2020.105834
[20]

Awasthi MK, Liu T, Awasthi SK, Duan Y, Pandey A, et al. 2020. Manure pretreatments with black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae): A study to reduce pathogen content. Science of the Total Environment 737:139842

doi: 10.1016/j.scitotenv.2020.139842
[21]

Beskin KV, Holcomb CD, Cammack JA, Crippen TL, Knap AH, et al. 2018. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions. Waste Manag. 74:213−20

doi: 10.1016/j.wasman.2018.01.019
[22]

Elhag O, Zhou D, Song Q, Soomro AA, Cai M, et al. 2017. Screening, Expression, Purification and Functional Characterization of Novel Antimicrobial Peptide Genes from Hermetia illucens (L.). PloS One 12:e0169582

doi: 10.1371/journal.pone.0169582
[23]

En S. 2019. http://www.enzme.com/page16?article_id=250

[24]

Abd El-Hack M, Shafi M, Alghamdi W, Abdelnour S, Shehata A, et al. 2020. Black Soldier Fly (Hermetia illucens) meal as a promising feed ingredient for Poultry: A comprehensive review. Agriculture 10:339

doi: 10.3390/agriculture10080339
[25]

Maurer V, Holinger M, Amsler Z, Früh B, Wohlfahrt J, et al. 2016. Replacement of soybean cake by Hermetia illucens meal in diets for layers. Journal of Insects as Food and Feed 2:83−90

doi: 10.3920/jiff2015.0071
[26]

Wang L, Liu J, Zhao Q, Wei W, Sun Y. 2016. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems. Bioresource Technology 211:1−5

doi: 10.1016/j.biortech.2016.03.048
[27]

Altiner M. 2019. Recovery of apatite from ore slimes using centrifugal heavy liquid separation. Journal of the Minerals, Metals and Materials Society (JOM) 71:3202−8

doi: 10.1007/s11837-019-03591-9
[28]

Jiang T, Wen Z, Ma X, Yang J, Chen M, et al. 2016. Characteristics and efficiency evaluation of livestock slurry separation technologies. Transactions of the Chinese Society of Agricultural Engineering 32:218−25

doi: 10.11975/j.issn.1002-6819.2016.z2.030
[29]

Carmen S, Traian C, Nicoleta M, Bogdan R. 2018. Liquid fertilizers with organic substances − agrochemical effects obtained by application. Rev. Chim. (Bucharest) 69:1478−84

doi: 10.37358/RC.18.6.6350
[30]

Kim M-S, Lee Y-S, Min H-G, Kim J-G. 2020. Applicability of the dynamic chamber-capture system (DCS) for estimating the flux of ammonia emission during liquid fertilizer spreading. Atmospheric Pollution Research 11:723−9

doi: 10.1016/j.apr.2020.01.001
[31]

Christensen ML, Christensen KV, Sommer SG. 2013. Solid–liquid separation of animal slurry. In Animal manure recycling: Treatment and Management, ed. Sommer SG, Christensen ML, Chapter 7. US: John Wiley & Sons Ltd. pp. 105-30

[32]

Da Silva MJ, Magalhães PSG. 2018. Modeling and design of an injection dosing system for site-specific management using liquid fertilizer. Precision Agriculture 20:649−62

doi: 10.1007/s11119-018-9602-5
[33]

Li S, Wu J, Wang X, Ma L. 2020. Economic and environmental sustainability of maize-wheat rotation production when substituting mineral fertilizers with manure in the North China Plain. Journal of Cleaner Production 271:122683

doi: 10.1016/j.jclepro.2020.122683
[34]

Adegbeye MJ, Ravi Kanth Reddy P, Obaisi AI, Elghandour MMMY, Oyebamiji KJ, et al. 2020. Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations − An overview. Journal of Cleaner Production 242:118319

doi: 10.1016/j.jclepro.2019.118319
[35]

Ali B, Shah GA, Traore B, Shah SAA, Shah SU, et al. 2019. Manure storage operations mitigate nutrient losses and their products can sustain soil fertility and enhance wheat productivity. Journal of Environmental Management 241:468−78

doi: 10.1016/j.jenvman.2019.02.081
[36]

Liu J, Bai Z, Cao Y, Zhang N, Zhao Z, et al. 2019. Impacts of surface acidification of manure on ammonia emission in animal housing. Chinese Journal of Eco-Agriculture 27:677−85

doi: 10.13930/j.cnki.cjea.181086
[37]

Li T, Zhang X, Gao H, Li B, Wang H, et al. 2019. Exploring optimal nitrogen management practices within site-specific ecological and socioeconomic conditions. Journal of Cleaner Production 241:11829

doi: 10.1016/j.jclepro.2019.118295
[38]

Sharpley AN, Bergstrom L, Aronsson H, Bechmann M, Bolster CH, et al. 2015. Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio 44(Suppl 2):S163−S179

doi: 10.1007/s13280-014-0612-x
[39]

The Ministry of Agriculture and Rural Affairs (MARA). 2018. http://www.moa.gov.cn/ztzl/xczx/xczxzlgh/201811/t20181129_6163953.htm

[40]

State Council of the People's Republic of China. 2018. https://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm

[41]

Jin S, Zhang B, Wu B, Han D, Hu Y, et al. 2000. Decoupling livestock and crop production at the household level in China. Nature Sustainability 4:48−55

doi: 10.1038/s41893-020-00596-0
[42]

Zhang T, Hou Y, Meng T, Ma Y, Tan M, et al. 2000. Replacing synthetic fertilizer by manure requires adjusted technology and incentives: A farm survey across China. Resources, Conservation and Recycling In press:105301

doi: 10.1016/j.resconrec.2020.105301