[1] Drew L. 2019. The growth of tea. Nature 566:S2−S4 doi: 10.1038/d41586-019-00395-4
[2] Zhou L, Xu H, Mischke S, Meinhardt LW, Zhang D, et al. 2014. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Horticulture Research 1:14029 doi: 10.1038/hortres.2014.29
[3] Shen W, Li H, Teng R, Wang Y, Wang W, et al. 2019. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics 111:1142−51 doi: 10.1016/j.ygeno.2018.07.009
[4] Singh KB, Foley RC, Oñate-Sánchez L. 2002. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology 5:430−436 doi: 10.1016/S1369-5266(02)00289-3
[5] Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science 5:199−206 doi: 10.1016/S1360-1385(00)01600-9
[6] Eulgem T, Somssich IE. 2007. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology 10:366−71 doi: 10.1016/j.pbi.2007.04.020
[7] Rushton PJ, Somssich IE, Ringler P, Shen QJ. 2010. WRKY transcription factors. Trends in Plant Science 15:247−58 doi: 10.1016/j.tplants.2010.02.006
[8] Ishiguro S, Nakamura K. 1994. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular Genetics and Genomics 244:563−71 doi: 10.1007/BF00282746
[9] Song Y, Ai C, Jing S, Yu D. 2010. Research progress on functional analysis of rice WRKY genes. Rice Science 17:60−72 doi: 10.1016/S1672-6308(08)60105-5
[10] Wang M, Vannozzi A, Wang G, Liang YH, Tornielli GB, et al. 2014. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Horticulture Research 1:14016 doi: 10.1038/hortres.2014.16
[11] Yu Y, Wang N, Hu R, Xiang F. 2016. Genome-wide identification of soybean WRKY transcription factors in response to salt stress. Springerplus 5:920 doi: 10.1186/s40064-016-2647-x
[12] Johnson CS, Kolevski B, Smyth DR. 2002. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. The Plant Cell 14:1359−75 doi: 10.1105/tpc.001404
[13] Gonzalez A, Brown M, Hatlestad G, Akhavan N, Smith T, et al. 2016. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Developmental Biology 419:54−63 doi: 10.1016/j.ydbio.2016.03.031
[14] Miao Y, Zentgraf U. 2010. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. The Plant Journal 63:179−88 doi: 10.1111/j.1365-313X.2010.04233.x
[15] Li Z, Peng J, Wen X, Guo H. 2012. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. Journal of Integrative Plant Biology 54:526−39 doi: 10.1111/j.1744-7909.2012.01136.x
[16] Jiang Y, Liang G, Yu D. 2012. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant 5:1375−88 doi: 10.1093/mp/sss080
[17] Ren X, Chen Z, Liu Y, Zhang H, Zhang M, et al. 2010. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal 63:417−29 doi: 10.1111/j.1365-313X.2010.04248.x
[18] Tao Z, Kou Y, Liu H, Li X, Xiao J, et al. 2011. OsWRKY45 alleles play different roles in abscisic acid signaling and salt stress tolerance but similar roles in drought and cold tolerance in rice. Journal of Experimental Botany 62:4863−74 doi: 10.1093/jxb/err144
[19] Liu X, Song Y, Xing F, Wang N, Wen F, et al. 2016. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma 253:1265−81 doi: 10.1007/s00709-015-0885-3
[20] Niu C, Wei W, Zhou Q, Tian A, Hao Y, et al. 2012. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant, Cell & Environment 35:1156−70 doi: 10.1111/j.1365-3040.2012.02480.x
[21] Li S, Fu Q, Chen L, Huang W, Yu D. 2011. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237−52 doi: 10.1007/s00425-011-1375-2
[22] Jiang Y, Deyholos MK. 2009. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology 69:91−105 doi: 10.1007/s11103-008-9408-3
[23] Wang Y, Shu Z, Wang W, Jiang X, Li X. 2016. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biologia Plantarum 60:443−451 doi: 10.1007/s10535-016-0618-2
[24] Wu Z, Li X, Liu Z, Li H, Wang Y, et al. 2016. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Molecular Genetics and Genomics 291:255−69 doi: 10.1007/s00438-015-1107-6
[25] Chen W, Hao W, Xu Y, Zheng C, Ni D, et al. 2019. Isolation and characterization of CsWRKY7, a Subgroup IId WRKY transcription factor from Camellia sinensis, linked to development in Arabidopsis. International Journal of Molecular Sciences 20:2815 doi: 10.3390/ijms20112815
[26] Wang P, Yue C, Chen D, Zheng Y, Zhang Q, et al. 2019. Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant (Camellia sinensis). Genes & Genomics 41:17−33 doi: 10.1007/s13258-018-0734-9
[27] Li SJ, Fu QT, Huang WD, Yu DQ. 2009. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Reports 28:683−693 doi: 10.1007/s00299-008-0666-y
[28] Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z. 2007. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biology 7:2 doi: 10.1186/1471-2229-7-2
[29] Zheng Z, Qamar SA, Chen Z, Mengiste T. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal 48:592−605 doi: 10.1111/j.1365-313X.2006.02901.x
[30] Bakshi M, Oelmüller R. 2014. WRKY transcription factors: Jack of many trades in plants. Plant Signaling & Behavior 9:e27700 doi: 10.4161/psb.27700
[31] Raineri J, Ribichich KF, Chan RL. 2015. The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty. Plant Cell Reports 34:2065−80 doi: 10.1007/s00299-015-1852-3
[32] Chen H, Lai Z, Shi J, Xiao Y, Chen Z, et al. 2010. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology 10(1):281 doi: 10.1186/1471-2229-10-281
[33] Scarpeci TE, Zanor MI, Mueller-Roeber B, Valle EM. 2013. Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Molecular Biology 83:265−77 doi: 10.1007/s11103-013-0090-8
[34] Zhou J, Wang J, Zheng Z, Fan B, Yu J, et al. 2015. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses. Journal of Experimental Botany 66(15):4567−83 doi: 10.1093/jxb/erv221
[35] Ma Q, Xia Z, Cai Z, Li L, Cheng Y, et al. 2019. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Frontiers in Plant Science 9:1979 doi: 10.3389/fpls.2018.01979
[36] Zhang L, Gu L, Ringler P, Smith S, Rushton PJ, et al. 2015. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells. Plant Science 236:214−22 doi: 10.1016/j.plantsci.2015.04.014
[37] Luo D, Ba L, Shan W, Lu W, Chen J. 2017. Involvement of WRKY transcription factors in abscisic-acid-induced cold tolerance of banana fruit. Journal of Agricultural and Food Chemistry 65:3627−35 doi: 10.1021/acs.jafc.7b00915
[38] Van Verk MC, Bol JF, Linthorst HJ. 2011. WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biology 11:89 doi: 10.1186/1471-2229-11-89
[39] Wang Z, Zhu Y, Wang L, Liu X, Liu Y, et al. 2009. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta 230(6):1155−66 doi: 10.1007/s00425-009-1014-3
[40] Chu X, Wang C, Chen X, Lu W, Li H, et al. 2015. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS One 10:e0143022 doi: 10.1371/journal.pone.0143022
[41] Li J, Luan Y, Liu Z. 2015. SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato. Plant Cell Tissue and Organ Culture 123:67−81 doi: 10.1007/s11240-015-0815-2
[42] Yan H, Jia H, Chen X, Hao L, An H, et al. 2014. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant & Cell Physiology 55:2060−76 doi: 10.1093/pcp/pcu133
[43] Gupta A, Rico-Medina A, Caño-Delgado AI. 2020. The physiology of plant responses to drought. Science 368:266−69 doi: 10.1126/science.aaz7614
[44] Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. 2001. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. The Plant Journal 25:295−303 doi: 10.1046/j.1365-313x.2001.00965.x
[45] Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, et al. 2012. WRKY transcription factors: key components in abscisic acid signaling. Plant Biotechnology Journal 10:2−11 doi: 10.1111/j.1467-7652.2011.00634.x
[46] Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, et al. 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal 33:751−63 doi: 10.1046/j.1365-313X.2003.01661.x
[47] Miao H, Wang Y, Liu J, Jia C, Hu W, et al. 2014. Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress. Electronic Journal of Biotechnology 17:287−95 doi: 10.1016/j.ejbt.2014.09.002
[48] Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. 2012. Role of proline under changing environments: a review. Plant Signaling & Behavior 7:1456−66 doi: 10.4161/psb.21949
[49] Alexieva V, Sergiev I, Mapelli S, Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment 24:1337−44 doi: 10.1046/j.1365-3040.2001.00778.x
[50] Wang F, Chen H, Li Q, Wei W, Li W, et al. 2015. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant Journal 83:224−236 doi: 10.1111/tpj.12879
[51] Mao G, Meng X, Liu Y, Zheng Z, Chen Z, et al. 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. The Plant Cell 23:1639−53 doi: 10.1105/tpc.111.084996
[52] Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NHT, et al. 2005. The MAP kinase substrate MKS1 is a regulator of plant defense responses. The EMBO Journal 24:2579−89 doi: 10.1038/sj.emboj.7600737
[53] Chen W, Xu Y, Mao J, Hao W, Liu Y, et al. 2019. Cloning and expression patterns of VQ-motif-containing proteins under abiotic stress in tea plant. Plant Growth Regulation 87:277−86 doi: 10.1007/s10725-018-0469-2
[54] Aquea F, Johnston AJ, Cañon P, Grossniklaus U, Arce-Johnson P. 2010. TRAUCO, a Trithorax-group gene homologue, is required for early embryogenesis in Arabidopsis thaliana. Journal of Experimental Botany 61:1215−24 doi: 10.1093/jxb/erp396
[55] Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25(4):402−8 doi: 10.1006/meth.2001.1262
[56] Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature protocols 3:1101−8 doi: 10.1038/nprot.2008.73
[57] Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x
[58] Wang L, Cao H, Qian W, Yao L, Hao X, et al. 2017. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis. Annals of Botany 119:1195−209 doi: 10.1093/aob/mcx011
[59] Li C, Xu Y, Ma J, Jin J, Huang D, et al. 2016. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis). BMC Plant Biology 16:195 doi: 10.1186/s12870-016-0885-2