[1] Qing KJ. 2004. The origin and history. In Illustration of one hundred ornamental flowers bonsai—the herbaceous peony. Beijing: China Forestry Publishing House. pp. 12–19
[2] Walton EF, McLaren GF, Boldingh HL. 2015. Seasonal patterns of starch and sugar accumulation in herbaceous peony (Paeonia lactiflora Pall.). The Journal of Horticultural Science and Biotechnology 82:365−70 doi: 10.1080/14620316.2007.11512244
[3] Byrne TG, Halevy AH. 1986. Forcing Herbaceous Peonies. Journal of the American Society for Horticultural Science 111:379−83
[4] Fulton TA, Hall AJ, Catley JL. 2001. Chilling requirements of Paeonia cultivars. Scientia Horticulturae 89:237−48 doi: 10.1016/S0304-4238(00)00237-5
[5] Kamenetsky R, Barzilay A, Erez A, Halevy AH. 2003. Temperature requirements for floral development of herbaceous peony cv. 'Sarah Bernhardt'. Scientia Horticulturae 97:309−20 doi: 10.1016/S0304-4238(02)00153-X
[6] Cheng F, Zhong Y, Long F, Yu X, Kamenetsky R. 2009. Chinese herbaceous peonies: Cultivar selection for forcing culture and effects of chilling and gibberellin (GA3) on plant development. Israel Journal of Plant Sciences 57:357−67 doi: 10.1560/IJPS.57.4.357
[7] Peng M, Huang FL, Meng FJ, Hu BZ, Chen XF, et al. 2017. Reproductive biology of Chinese herbaceous perennial peony (Paeonia lactiflora Pall.) using the paraffin method. Phyton-international Journal of Experimental Botany 86:296−305 doi: 10.32604/phyton.2017.86.296
[8] Tan FC, Swain SM. 2006. Genetics of flower initiation and development in annual and perennial plants. Physiologia Plantarum 128:8−17 doi: 10.1111/j.1399-3054.2006.00724.x
[9] Zhao T, Yang X, Yang X, Rao P, An X, et al. 2021. Identification of key flowering-related genes and their seasonal expression in Populus tomentosa reproductive buds suggests dual roles in floral development and dormancy. Industrial Crops and Products 161:113175 doi: 10.1016/j.indcrop.2020.113175
[10] Fornara F, de Montaigu A, Coupland G. 2010. SnapShot: Control of Flowering in Arabidopsis. Cell 141 doi: 10.1016/j.cell.2010.04.024
[11] Brassac J, Muqaddasi QH, Plieske J, Ganal MW, Röder MS. 2021. Linkage mapping identifies a non-synonymous mutation in FLOWERING LOCUS T (FT-B1) increasing spikelet number per spike. Scientific Reports 11:1585 doi: 10.1038/s41598-020-80473-0
[12] Zhao Y, Zhu P, Hepworth J, Bloomer R, Antoniou-Kourounioti RL, et al. 2021. Natural temperature fluctuations promote COOLAIR regulation of FLC. Genes & Development 35:888−98 doi: 10.1101/gad.348362.121
[13] Orbović V, Ravanfar SA, Acanda Y, Narvaez J, Merritt BA, et al. 2021. Stress-inducible Arabidopsis thaliana RD29A promoter constitutively drives Citrus sinensis APETALA1 and LEAFY expression and precocious flowering in transgenic Citrus spp. Transgenic research1−13 doi: 10.1007/s11248-021-00260-z
[14] Han X, Wang D, Song G. 2021. Expression of a maize SOC1 gene enhances soybean yield potential through modulating plant growth and flowering. Scientific Reports 11:12758 doi: 10.1038/s41598-021-92215-x
[15] Štorchová H, Hubáčková H, Abeyawardana OAJ, Walterová J, Vondráková Z, et al. 2019. Chenopodium ficifolium flowers under long days without upregulation of FLOWERING LOCUS T (FT) homologs. Planta 250:2111−25 doi: 10.1007/s00425-019-03285-1
[16] Mathieu J, Warthmann N, Küttner F, Schmid M. 2007. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Current Biology 17:1055−60 doi: 10.1016/j.cub.2007.05.009
[17] Yan L, Fu D, Li C, Blechl A, Tranquilli G, et al. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. PNAS 103:19581−86 doi: 10.1073/pnas.0607142103
[18] Bi Z, Tahir AT, Huang H, Hua Y. 2019. Cloning and functional analysis of five TERMINAL FLOWER 1/CENTRORADIALIS-like genes from Hevea brasiliensis. Physiologia Plantarum 166:612−27 doi: 10.1111/ppl.12808
[19] Tsuji H, Tachibana C, Tamaki S, Taoka KI, Kyozuka J, et al. 2015. Hd3a promotes lateral branching in rice. The Plant Journal 82:256−66 doi: 10.1111/tpj.12811
[20] Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. 2007. Hd3a protein is a mobile flowering signal in rice. Science 316:1033−36 doi: 10.1126/science.1141753
[21] Panjama K, Suzuki E, Otani M, Nakano M, Ohtake N, et al. 2019. Isolation and functional analysis of FLOWERING LOCUS T orthologous gene from Vanda hybrid. Journal of Plant Biochemistry and Biotechnology 28:374−81 doi: 10.1007/s13562-019-00487-2
[22] Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, et al. 2013. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. PNAS 110:17137−42 doi: 10.1073/pnas.1307617110
[23] Yan X, Cao Q, He H, Wang L, Jia G. 2021. Functional Analysis and Expression Patterns of Members of the FLOWERING LOCUS T (FT) Gene Family in Lilium. Plant Physiology and Biochemistry 163:250−60 doi: 10.1016/j.plaphy.2021.03.056
[24] Jing Y, Guo Q, Lin R. 2019. The Chromatin-Remodeling Factor PICKLE Antagonizes Polycomb Repression of FT to Promote Flowering. Plant Physiology 181:656−68 doi: 10.1104/pp.19.00596
[25] Lee R, Baldwin S, Kenel F, McCallum J, MacKnight R. 2013. FLOWERING LOCUS T genes control onion bulb formation and flowering. Nature Communications 4:2884 doi: 10.1038/ncomms3884
[26] Liu W, Jiang B, Ma L, Zhang S, Zhai H, et al. 2018. Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytologist 217:1335−45 doi: 10.1111/nph.14884
[27] Hao D, Chen S, Xiao P, Liu M. 2012. Application of High-Throughput Sequencing in Medicinal Plant Transcriptome Studies. Drug Development Research 73:487−98 doi: 10.1002/ddr.21041
[28] Bankar KG, Todur VN, Shukla RN, Vasudevan M. 2015. Ameliorated de novo transcriptome assembly using Illumina paired end sequence data with Trinity Assembler. Genomics Data 5:352−59 doi: 10.1016/j.gdata.2015.07.012
[29] Tao X, Gu Y, Jiang Y, Zhang Y, Wang H. 2013. Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweet potato. Biosci Biotechnol Biochem 77:2169−74 doi: 10.1271/bbb.130218
[30] Zhang X, Zhao L, Larson-Rabin Z, Li D, Guo Z. 2012. De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 7:e42082 doi: 10.1371/journal.pone.0042082
[31] Gao J, Zhang Y, Zhang C, Qi F, Li X, et al. 2014. Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-seq analysis. PLoS One 9:e98910 doi: 10.1371/journal.pone.0098910
[32] Zhang Z, Wang P, Li Y, Ma L, Li L, et al. 2014. Global transcriptome analysis and identification of the flowering regulatory genes expressed in leaves of Lagerstroemia indica. DNA and Cell Biology 33:680−88 doi: 10.1089/dna.2014.2469
[33] Wei C, Tao X, Li M, He B, Yan L, et al. 2015. De novo transcriptome assembly of Ipomoea nil using Illumina sequencing for gene discovery and SSR marker identification. Molecular Genetics and Genomics 290:1873−84 doi: 10.1007/s00438-015-1034-6
[34] Ness RW, Siol M, Barrett SCH. 2011. De novo sequence assembly and characterization of the floral transcriptome in cross-and self-fertilizing plants. BMC Genomics 12:298 doi: 10.1186/1471-2164-12-298
[35] Singh VK, Jain M. 2014. Transcriptome profiling for discovery of genes involved in shoot apical meristem and flower development. Genomics Data 2:135−38 doi: 10.1016/j.gdata.2014.06.004
[36] Zhang J, Ai X, Sun L, Zhang D, Guo W, et al. 2011. Transcriptome profile analysis of flowering molecular processes of early flowering trifoliate orange mutant and the wild-type [Poncirus trifoliata (L.) Raf.] by massively parallel signature sequencing. BMC Genomics 12:63−63 doi: 10.1186/1471-2164-12-63
[37] Guo X, Yu C, Luo L, Wan H, Zhen N, et al. 2017. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'. BMC Genomics 18:199 doi: 10.1186/s12864-017-3584-y
[38] Amasino RM, Michaels SD. 2010. The Timing of Flowering. Plant Physiology 154:516−20 doi: 10.1104/pp.110.161653
[39] Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences 68:2013−37 doi: 10.1007/s00018-011-0673-y
[40] Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, et al. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040−43 doi: 10.1126/science.1126038
[41] Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, et al. 2006. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. PNAS 103:6398−403 doi: 10.1073/pnas.0601620103
[42] Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, et al. 2011. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478:119−22 doi: 10.1038/nature10431
[43] Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, et al. 2011. FLOWERING LOCUS T Regulates Stomatal Opening. Current Biology 21:1232−38 doi: 10.1016/j.cub.2011.06.025
[44] Chen Z, Han Y, Ning K, Ding Y, Zhao W, et al. 2017. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.). Frontiers in Plant Science 8:2248 doi: 10.3389/fpls.2017.02248
[45] Odipio J, Getu B, Chauhan RD, Alicai T, Bart R, et al. 2020. Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava. PLoS One 15:e0227199 doi: 10.1371/journal.pone.0227199
[46] Andrés F, Kinoshita A, Kalluri N, Fernández V, Falavigna VS, et al. 2020. The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana. BMC Plant Biology 20:53 doi: 10.1186/s12870-020-2266-0
[47] Wang L, Sun J, Ren L, Zhou M, Han X, et al. 2020. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum. Plant Biotechnology Journal 18:1562−1572 doi: 10.1111/pbi.13322
[48] Leeggangers HA, Rosilio-Brami T, Bigas-Nadal J, Rubin N, van Dijk AD, et al. 2018. Tulipa gesneriana and Lilium longiflorum PEBP Genes and Their Putative Roles in Flowering Time Control. Plant and Cell Physiology 59:90−106 doi: 10.1093/pcp/pcx164
[49] Chen L, Cai Y, Qu M, Wang L, Sun H, et al. 2020. Soybean adaption to high-latitude regions is associated with natural variations of GmFT2b, an ortholog of FLOWERING LOCUS T. Plant, Cell & Environment 43:934−44 doi: 10.1111/pce.13695
[50] Wang S, Li H, Li Y, Li Z, Qi J, et al. 2020. FLOWERING LOCUS T improves cucumber adaptation to higher latitudes. Plant Physiology 182:908−18 doi: 10.1104/pp.19.01215
[51] Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323 doi: 10.1186/1471-2105-12-323
[52] Zhao X, Yang G, Liu X, Yu Z, Peng S. 2020. integrated analysis of seed microRNA and mRNA transcriptome reveals important functional genes and microRNA-Targets in the process of walnut (Juglans regia) seed oil accumulation. International Journal of Molecular Sciences 21:9093 doi: 10.3390/ijms21239093
[53] Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x