[1]

Murugesh CS, Manoj JB, Haware DJ, Ravi R, Subramanian R. 2017. Influence of water quality on nutritional and sensory characteristics of green tea infusion. Journal of Food Process Engineering 40:e12532

doi: 10.1111/jfpe.12532
[2]

Yang Z, Baldermann S, Watanabe N. 2013. Recent studies of the volatile compounds in tea. Food Research International 53(2):585−99

doi: 10.1016/j.foodres.2013.02.011
[3]

Rawat R, Gulati A, Kiran Babu GD, Acharya R, Kaul VK, et al. 2007. Characterization of volatile components of Kangra orthodox black tea by gas chromatography-mass spectrometry. Food Chemistry 105(1):229−35

doi: 10.1016/j.foodchem.2007.03.071
[4]

Lee JE, Lee BJ, Chung JO, Kim HN, Kim EH, et al. 2015. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chemistry 174:452−59

doi: 10.1016/j.foodchem.2014.11.086
[5]

Li S, Lo CY, Pan MH, Lai CS, Ho CT, et al. 2013. Black tea: chemical analysis and stability. Food & Function 4(1):10−8

doi: 10.1039/c2fo30093a
[6]

Takechi R, Alfonso H, Hiramatsu N, Ishisaka A, Tanaka A, et al. 2016. Elevated plasma and urinary concentrations of green tea catechins associated with improved plasma lipid profile in healthy Japanese women. Nutrition Research 36(3):220−26

doi: 10.1016/j.nutres.2015.11.010
[7]

Butt MS, Imran A, Sharif MK, Ahmad RS, Xiao H, et al. 2014. Black tea polyphenols: a mechanistic treatise. Critical Reviews in Food Science and Nutrition 54(8):1002−11

doi: 10.1080/10408398.2011.623198
[8]

Cabrera C, Giménez R, López MC. 2003. Determination of tea components with antioxidant activity. Journal of Agricultural and Food Chemistry 51(15):4427−35

doi: 10.1021/jf0300801
[9]

Zhang Q, Wu S, Li Y, Liu M, Ni K, et al. 2019. Characterization of three different classes of non-fermented teas using untargeted metabolomics. Food Research International 121(4):697−704

doi: 10.1016/j.foodres.2018.12.042
[10]

Langley-Evans SC . 2000. Antioxidant potential of green and black tea determined using the ferric reducing power (FRAP) assay. International Journal of Food Sciences and Nutrition 51(3):181−88

doi: 10.1080/09637480050029683
[11]

Mahdavi-Roshan M, Salari A, Ghorbani Z, Ashouri A. 2020. The effects of regular consumption of green or black tea beverage on blood pressure in those with elevated blood pressure or hypertension: A systematic review and meta-analysis. Complementary Therapies in Medicine 51:102430

doi: 10.1016/j.ctim.2020.102430
[12]

Joshi R, Gulati A. 2015. Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea. Food Chemistry 167:290−98

doi: 10.1016/j.foodchem.2014.06.112
[13]

Fraser K, Lane GA, Otter DE, Harrison SJ, Quek SY, et al. 2014. Non-targeted analysis by LC–MS of major metabolite changes during the oolong tea manufacturing in New Zealand. Food Chemistry 151:394−403

doi: 10.1016/j.foodchem.2013.11.054
[14]

Xu J, Hu F, Wang W, Wan X, Bao G. 2015. Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC–MS based metabolomics. Food Chemistry 186:176−84

doi: 10.1016/j.foodchem.2014.12.045
[15]

Dai W, Xie D, Lu M, Li P, Lv H, et al. 2017. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Food Research International 96:40−45

doi: 10.1016/j.foodres.2017.03.028
[16]

Yan N, Du Y, Liu X, Chu M, Shi J, et al. 2019. A comparative UHPLC-QqQ-MS-based metabolomics approach for evaluating Chinese and North American wild rice. Food Chemistry 275:618−27

doi: 10.1016/j.foodchem.2018.09.153
[17]

Wang A, Li R, Ren L, Gao X, Zhang Y, et al. 2018. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chemistry 260:124−34

doi: 10.1016/j.foodchem.2018.03.125
[18]

Chen W, Gong L, Guo Z, Wang W, Zhang H, et al. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular Plant 6(6):1769−80

doi: 10.1093/mp/sst080
[19]

Trygg J, Holmes E, Lundstedt T. 2007. Chemometrics in metabonomics. Journal of Proteome Research 6(2):469−79

doi: 10.1021/pr060594q
[20]

Ku K, Choi JN, Kim J, Kim JK, Yoo LG, et al. 2010. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry 58:418−26

doi: 10.1021/jf902929h
[21]

Chen Y, Zhang R, Song Y, He J, Sun J, et al. 2009. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst 134:2003−11

doi: 10.1039/b907243h
[22]

Narukawa M, Kimata H, Noga C, Watanabe T. 2010. Taste characterisation of green tea catechins. International Journal of Food Science & Technology 45:1579−85

doi: 10.1111/j.1365-2621.2010.02304.x
[23]

Rosenzweig S, Yan W, Dasso M, Spielman AI. 1999. Possible novel mechanism for bitter taste mediated through cGMP. Journal of Neurophysiology 81:1661−65

doi: 10.1152/jn.1999.81.4.1661
[24]

Thévenot EA, Roux A, Xu Y, Ezan E, Junot C. 2015. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research 14:3322−35

doi: 10.1021/acs.jproteome.5b00354
[25]

Sieber M, Wagner S, Rached E, Amberg A, Mally A, et al. 2009. Metabonomic study of ochratoxin a toxicity in rats after repeated administration: phenotypic anchoring enhances the ability for biomarker discovery. Chemical Research in Toxicology 22:1221−31

doi: 10.1021/tx800459q
[26]

Zhang Q, Ruan J. 2016. Tea: analysis and tasting. In Encyclopedia of Food and Health, eds. Caballero B, Finglas PM, Toldrá F. UK: Academic Press, Elsevier. pp. 256−67 https://doi.org/10.1016/B978-0-12-384947-2.00687-5

[27]

Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry 72:1−20

doi: 10.1016/j.plaphy.2013.05.009
[28]

Jay-Allemand C. 2015. New evidence for the functional roles of secondary metabolites in plant – environment interactions. Environmental and Experimental Botany 119:1−3

doi: 10.1016/j.envexpbot.2015.06.011
[29]

Yao L, Liu X, Jiang Y, Caffin N, D’Arcy B, et al. 2006. Compositional analysis of teas from Australian supermarkets. Food Chemistry 94:115−122

doi: 10.1016/j.foodchem.2004.11.009
[30]

Landi M, Tattini M, Gould KS. 2015. Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany 119:4−17

doi: 10.1016/j.envexpbot.2015.05.012
[31]

Yu X, Hu S, He C, Zhou J, Qu F, et al. 2019. Chlorophyll metabolism in postharvest tea (Camellia sinensis L.) leaves: variations in color values, chlorophyll derivatives, and gene expression levels under different withering treatments. Journal of Agricultural and Food Chemistry 67:10624−36

doi: 10.1021/acs.jafc.9b03477
[32]

Li J, Hua J, Yuan H, Deng Y, Zhou Q, et al. 2021. Investigation on green tea lipids and their metabolic variations during manufacturing by nontargeted lipidomics. Food Chemistry 339:128114

doi: 10.1016/j.foodchem.2020.128114
[33]

Zhou D, Chen Y, Ni D. 2008. Effect of water quality on the nutritional components and antioxidant activity of green tea extracts. Food Chemistry 113:110−14

doi: 10.1016/j.foodchem.2008.07.033
[34]

Li M, Liu J, Zhou Y, Zhou S, Zhang S, et al. 2020. Transcriptome and metabolome profiling unveiled mechanisms of tea (Camellia sinensis) quality improvement by moderate drought on pre-harvest shoots. Phytochemistry 180:112515

doi: 10.1016/j.phytochem.2020.112515