[1] Johnson SR, Bhat WW, Bibik J, Turmo A, Hamberger B, et al. 2019. A database-driven approach identifies additional diterpene synthase activities in the mint family (Lamiaceae). The Journal of Biological Chemistry 294:1349−62 doi: 10.1074/jbc.RA118.006025
[2] Ignea C, Ioannou E, Georgantea P, Loupassaki S, Trikka FA, et al. 2015. Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast. Metabolic Engineering 28:91−103 doi: 10.1016/j.ymben.2014.12.001
[3] Irmisch S, Müller AT, Schmidt L, Günther J, Gershenzon J, et al. 2015. One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar. BMC Plant Biology 15:262−74 doi: 10.1186/s12870-015-0647-6
[4] Fu J, Ren F, Lu X, Mao H, Xu M, et al. 2016. A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism. Plant Physiology 170:742−51 doi: 10.1104/pp.15.01727
[5] Hooley R. 1994. Gibberellins: perception, transduction and responses. Plant Molecular Biology 26:1529−55 doi: 10.1007/BF00016489
[6] Yamaguchi S, Sun T, Kawaide H, Kamiya Y. 1998. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiology 116:1271−78 doi: 10.1104/pp.116.4.1271
[7] Richards DE, King KE, Ait-Ali T, Harberd NP. 2001. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology and Plant Molecular Biology 52:67−88 doi: 10.1146/annurev.arplant.52.1.67
[8] Zi J, Mafu S, Peters RJ. 2014. To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism. Annual Review of Plant Biology 65:259−86 doi: 10.1146/annurev-arplant-050213-035705
[9] Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59:225−51 doi: 10.1146/annurev.arplant.59.032607.092804
[10] Chen F, Tholl D, Bohlmann J, Pichersky E. 2011. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal 66:212−29 doi: 10.1111/j.1365-313X.2011.04520.x
[11] Fujihashi M, Sato T, Tanaka Y, Yamamoto D, Nishi T, et al. 2018. Crystal structure and functional analysis of large-terpene synthases belonging to a newly found subclass. Chemical Science 9:3754−58 doi: 10.1039/C8SC00289D
[12] Zerbe P, Hamberger B, Yuen MMS, Chiang A, Sandhu HK, et al. 2013. Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiology 162:1073−91 doi: 10.1104/pp.113.218347
[13] Peters RJ. 2006. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67:2307−17 doi: 10.1016/j.phytochem.2006.08.009
[14] Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, et al. 2011. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc. Natl. Acad. Sci. U.S.A. 108:5455−60 doi: 10.1073/pnas.1014714108
[15] Zhou K, Xu M, Tiernan M, Xie Q, Toyomasu T, et al. 2012. Functional characterization of wheat ent-kaurene(-like) synthases indicates continuing evolution of labdane-related diterpenoid metabolism in the cereals. Phytochemistry 84:47−55 doi: 10.1016/j.phytochem.2012.08.021
[16] Zerbe P, Chiang A, Dullat H, O'Neil-Johnson M, Starks C, et al. 2014. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. The Plant Journal 79:914−27 doi: 10.1111/tpj.12589
[17] Jin B, Cui G, Guo J, Tang J, Duan L, et al. 2017. Functional diversification of kaurene synthase-like genes in isodon rubescens. Plant Physiology 174:943−55 doi: 10.1104/pp.17.00202
[18] Heskes AM, Sundram TCM, Boughton BA, Jensen NB, Hansen NL, et al. 2018. Biosynthesis of bioactive diterpenoids in the medicinal plant Vitex agnus-castus. The Plant Journal 93:943−58 doi: 10.1111/tpj.13822
[19] Alasbahi RH, Melzig MF. 2010. Plectranthus barbatus: a review of phytochemistry, ethnobotanical uses and pharmacology − part 1. Planta Med 76:653−61 doi: 10.1055/s-0029-1240898
[20] Li L, Xu LJ, Ma GZ, Dong YM, Peng Y, et al. 2013. The large-leaved Kudingcha (Ilex latifolia Thunb and Ilex kudingcha C.J. Tseng): a traditional Chinese tea with plentiful secondary metabolites and potential biological activities. Journal of Natural Medicines 67:425−37 doi: 10.1007/s11418-013-0758-z
[21] Liu L, Sun Y, Laura T, Liang X, Ye H, et al. 2009. Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng. Food Chemistry 112:35−41 doi: 10.1016/j.foodchem.2008.05.038
[22] Wong IYF, He ZD, Huang Y, Chen ZY. 2001. Antioxidative activities of phenylethanoid glycosides from Ligustrumpurpurascens. Journal of Agricultural and Food Chemistry 49:3113−19 doi: 10.1021/jf0100604
[23] Fan J, Wu Z, Zhao T, Sun Y, Ye H, et al. 2014. Characterization, antioxidant and hepatoprotective activities of polysaccharides from Ilex latifolia Thunb. Carbohydrate Polymers 101:990−97 doi: 10.1016/j.carbpol.2013.10.037
[24] Hu T, He X, Jiang J. 2014. Functional analyses on antioxidant, anti-inflammatory, and antiproliferative effects of extracts and compounds from ilex latifolia thunb., a chinese bitter tea. Journal of Agricultural and Food Chemistry 62:8608−15 doi: 10.1021/jf501670v
[25] Zhang T, Hu T, Jiang J, Zhao J, Zhu W. 2018. Antioxidant and anti-inflammatory effects of polyphenols extracted from Ilex latifolia Thunb. RSC Advances 8:7134−41 doi: 10.1039/C7RA13569F
[26] Li L, Peng Y, Ma G, He C, Feng Y, et al. 2012. Quantitative analysis of five kudinosides in the large-leaved Kudingcha and related species from the genus Ilex by UPLC-ELSD. Phytochemical Analysis 23:677−83 doi: 10.1002/pca.2372
[27] Wu H, Chen Y, Yu Y, Zang J, Wu Y, et al. 2017. Ilex latifolia Thunb protects mice from HFD-induced body weight gain. Scientific Reports 7:14660 doi: 10.1038/s41598-017-15292-x
[28] Zhang T, Zheng C, Hu T, Jiang J, Zhao J, et al. 2018. Polyphenols from Ilex latifolia Thunb. (a Chinese bitter tea) exert anti-atherosclerotic activity through suppressing NF-κB activation and phosphorylation of ERK1/2 in macrophages. MedChemComm 9:254−63 doi: 10.1039/C7MD00477J
[29] Kim JY, Jeong HY, Lee HK, Yoo JK, Bae K, et al. 2011. Protective effect of Ilex latifolia, a major component of 'kudingcha', against transient focal ischemia-induced neuronal damage in rats. Journal of Ethnopharmacology 133:558−64 doi: 10.1016/j.jep.2010.10.037
[30] Chen F, Li X, Yang S, Feng Y, Jiang J. 2007. The antitumor activities of the leaves of Ilex latifolia Thunb. China Forestry Science and Technology 21:30−1
[31] Woo AYH, Jiang J, Chau CF, Waye MMY, Cheung WT, et al. 2001. Inotropic and chronotropic actions of Ilex latifolia: Inhibition of adenosine-5'-triphosphatases as a possible mechanism. Life Sciences 68:1259−70 doi: 10.1016/S0024-3205(00)01024-9
[32] Kim JY, Lee HK, Jang JY, Yoo JK, Seong YH. 2015. Ilex latifolia prevents amyloid β protein (25−35)-induced memory impairment by inhibiting apoptosis and tau phosphorylation in mice. Journal of Medicinal Food 18:1317−26 doi: 10.1089/jmf.2015.3443
[33] Aach H, Bode H, Robinson DG, Graebe JE. 1997. ent-Kaurene synthase is located in proplastids of meristematic shoot tissues. Planta 202:211−19 doi: 10.1007/s004250050121
[34] Sun T, Kamiya Y. 1997. Regulation and cellular localization of ent-kaurene synthesis. Physiologia Plantarum 101:701−8 doi: 10.1111/j.1399-3054.1997.tb01054.x
[35] Xu M, Ross Wilderman P, Morrone D, Xu J, Roy A, et al. 2007. Functional characterization of the rice kaurene synthase-like gene family. Phytochemistry 68:312−26 doi: 10.1016/j.phytochem.2006.10.016
[36] Yamamura Y, Taguchi Y, Ichitani K, Umebara I, Ohshita A, et al. 2018. Characterization of ent-kaurene synthase and kaurene oxidase involved in gibberellin biosynthesis from Scoparia dulcis. Journal of Natural Medicines 72:456−63 doi: 10.1007/s11418-017-1168-4
[37] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725−29 doi: 10.1093/molbev/mst197
[38] Cyr A, Wilderman PR, Determan M, Peters RJ. 2007. A modular approach for facile biosynthesis of labdane-related diterpenes. Journal of the American Chemical Society 129:6684−85 doi: 10.1021/ja071158n
[39] Liu G, Fu J. 2018. Squalene synthase cloning and functional identification in wintersweet plant (Chimonanthus zhejiangensis). Botanical Studies 59:30−39 doi: 10.1186/s40529-018-0246-6
[40] Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402−8 doi: 10.1006/meth.2001.1262