[1] Xia E, Zhang H, Sheng J, Li K, Zhang Q, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−877 doi: 10.1016/j.molp.2017.04.002
[2] Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The Reference Genome of Tea Plant and Resequencing of 81 Diverse Accessions Provide Insights into Its Genome Evolution and Adaptation. Molecular Plant 13:1013−26 doi: 10.1016/j.molp.2020.04.010
[3] Wang W, Zhou Y Y, Wu Y, Dai X, Liu Y, et al. 2018. Insight into catechins metabolic pathways of Camellia sinensis based on genome and transcriptome analysis. Journal of Agricultural and Food Chemistry 66:4281−93 doi: 10.1021/acs.jafc.8b00946
[4] Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115:E4151−E4158 doi: 10.1073/pnas.1719622115
[5] Zhao J, Li P, Xia T, Wan X. 2020. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology 40:667−88 doi: 10.1080/07388551.2020.1752617
[6] Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53:1250−59 doi: 10.1038/s41588-021-00895-y
[7] Chacko SM, Thambi PT, Kuttan R, Nishigaki I. 2010. Beneficial effects of green tea: A literature review. Chinese Medicine 5:13 doi: 10.1186/1749-8546-5-13
[8] Zhang L, Cao Q, Granato D, Xu Y, Ho CT. 2020. Association between chemistry and taste of tea: A review. Trends in Food Science & Technology 101:139−49 doi: 10.1016/j.jpgs.2020.05.015
[9] Zhuang J, Dai X, Zhu M, Zhang S, Dai Q, et al. 2020. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols. Food Chemistry 305:125507 doi: 10.1016/j.foodchem.2019.125507
[10] Xu N, Chu J, Wang M, Chen L, Zhang L, et al. 2018. Large yellow tea attenuates macrophage-related chronic inflammation and metabolic syndrome in high-fat diet treated mice. Journal of Agricultural and Food Chemistry 66:3823−32 doi: 10.1021/acs.jafc.8b00138
[11] Xu N, Chu J, Dong R, Lu F, Zhang X, et al. 2021. Yellow tea stimulates thermogenesis in mice through heterogeneous browning of adipose tissues. Molecular Nutrition & Food Research 65:2000864 doi: 10.1002/mnfr.202000864
[12] Rogers PJ, Smith JE, Heatherley SV, Pleydell-Pearce CW. 2008. Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology 195:569−77 doi: 10.1007/s00213-007-0938-1
[13] Kaneko S, Kumazawa K, Masuda H, Henze A, Hofmann T. 2006. Molecular and Sensory Studies on the Umami Taste of Japanese Green Tea. Journal of Agricultural and Food Chemistry 54:2688−94 doi: 10.1021/jf0525232
[14] Rossetti D, Bongaerts JHH, Wantling E, Stokes JR, Williamson AM. 2009. Astringency of tea catechins: More than an oral lubrication tactile percept. Food Hydrocolloids 23:1984−92 doi: 10.1016/j.foodhyd.2009.03.001
[15] Scharbert S, Hofmann T. 2005. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. Journal of Agricultural and Food Chemistry 53:5377−84 doi: 10.1021/jf050294d
[16] Zhang Q, Liu M, Ruan J. 2017. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC Plant Biology 17:64 doi: 10.1186/s12870-017-1012-8
[17] Gai Z, Wang Y, Ding Y, Qian W, Qiu C, et al. 2020. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Scientific Reports 10:12275 doi: 10.1038/s41598-020-69080-1
[18] Zhang Q, Shi Y, Ma L, Yi X, Ruan J. 2014. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea. PLoS ONE 9:e112572 doi: 10.1371/journal.pone.0112572
[19] Saijo R. 1980. Effect of shade treatment on biosynthesis of catechins in tea plants. Plant Cell Physiology 21:989−98 doi: 10.1093/oxfordjournals.pcp.a076087
[20] Zhu J, Xu Q, Zhao S, Xia X, Yan X, et al. 2020. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis). Plant Science 290:110306 doi: 10.1016/j.plantsci.2019.110306
[21] Liu L, Li Y, She G, Zhang X, Jordan B, et al. 2018. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC Plant Biology 18:233 doi: 10.1186/s12870-018-1440-0
[22] Zheng C, Ma J, Ma C, Shen S, Liu Y, et al. 2019. Regulation of growth and flavonoid formation of tea plants (Camellia sinensis) by blue and green light. Journal of Agricultural and Food Chemistry 67:2408−19 doi: 10.1021/acs.jafc.8b07050
[23] Wang Y, Gao L, Shan Y, Liu Y, Tian Y, et al. 2012. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 141:7−16 doi: 10.1016/j.scienta.2012.04.013
[24] Shamala LF, Zhou H, Han Z, Wei S. 2020. UV-B induces distinct transcriptional re-programing in UVR8-signal transduction, flavonoid, and terpenoids pathways in Camellia sinensis. Frontiers in Plant Science 11:234−49 doi: 10.3389/fpls.2020.00234
[25] Li Y, Jeyaraj A, Yu H, Wang Y, Ma Q, et al. 2020. Metabolic regulation profiling of carbon and nitrogen in tea plants [Camellia sinensis (L.) O. Kuntze] in response to shading. Journal of Agricultural and Food Chemistry 68:961−74 doi: 10.1021/acs.jafc.9b05858
[26] Sano T, Horie H, Matsunaga A, Hirono Y. 2018. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation. Journal of the Science of Food and Agriculture 98:5666−76 doi: 10.1002/jsfa.9112
[27] Liu L, Lin N, Liu X, Yang S, Wang W, et al. 2020. From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves. Frontiers in Plant Science 11:256 doi: 10.3389/fpls.2020.00256
[28] Yamaguchi K, Shibamoto T. 1981. Volatile constituents of green tea, Gyokuro (Camellia sinensis L. var Yabukita). Journal of Agricultural and Food Chemistry 29:366−370 doi: 10.1021/jf00104a035
[29] Lin N, Liu X, Zhu W, Cheng X, Wang X, et al. 2021. Ambient ultraviolet B signal modulates tea flavor characteristics via shifting a metabolic flux in flavonoid biosynthesis. Journal of Agricultural and Food Chemistry 69:3401−14 doi: 10.1021/acs.jafc.0c07009
[30] Fu X, Chen Y, Mei X, Katsuno T, Kobayashi E, et al. 2015. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Scientific Reports 5:16858 doi: 10.1038/srep16858
[31] Li W, Tan L, Zou Y, Tan X, Huang J, et al. 2020. The effects of ultraviolet A/B treatments on anthocyanin accumulation and gene expression in dark-purple tea cultivar 'Ziyan' (Camellia sinensis). Molecules 25:354 doi: 10.3390/molecules25020354
[32] Zhao X, Zeng X, Lin N, Yu S, Fernie AR, et al. 2021. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network. Horticulture Research 8:110 doi: 10.1038/s41438-021-00545-8
[33] Wu T, Zou R, Pu D, Lan Z, Zhao B. 2021. Non-targeted and targeted metabolomics profiling of tea plants (Camellia sinensis) in response to its intercropping with Chinese chestnut. BMC Plant Biology 21:55 doi: 10.1186/s12870-021-02841-w
[34] Ma Y, Fu S, Zhang X, Zhao K, Chen HYH. 2017. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Applied Soil Ecology 119:171−78 doi: 10.1016/j.apsoil.2017.06.028
[35] Dai W, Qi D, Yang T, Lv H, Guo L, et al. 2015. Nontargeted analysis using ultraperformance liquid chromatography – quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry 63:9869−78 doi: 10.1021/acs.jafc.5b03967
[36] Yang T, Xie Y, Lu X, Yan X, Wang Y, et al. 2021. Shading promoted theanine biosynthesis in the roots and allocation in the shoots of the tea plant (Camellia sinensis L.) cultivar Shuchazao. Journal of Agricultural and Food Chemistry 69:4795−803 doi: 10.1021/acs.jafc.1c00641
[37] Song R, Kelman D, Johns KL, Wright AD. 2012. Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chemistry 133:707−14 doi: 10.1016/j.foodchem.2012.01.078
[38] Zhang C, Wang M, Gao X, Zhou F, Shen C, et al. 2020. Multi-omics research in albino tea plants: Past, present, and future. Scientia Horticulturae 261:108943 doi: 10.1016/j.scienta.2019.108943
[39] Feng L, Gao M, Hou R, Hu X, Zhang L, et al. 2014. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chemistry 155:98−104 doi: 10.1016/j.foodchem.2014.01.044
[40] Li C, Ma J, Huang D, Ma C, Jin J, et al. 2018. Comprehensive dissection of metabolic changes in albino and green tea cultivars. Journal of Agricultural and Food Chemistry 66:2040−48 doi: 10.1021/acs.jafc.7b05623
[41] Liu G, Han Z, Feng L, Gao L, Gao M, et al. 2017. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar 'Yu-Jin-Xiang' with an emphasis on catechin production. Scientific Reports 7:45062 doi: 10.1038/srep45062
[42] Lu M, Han J, Zhu B, Jia H, Yang T, et al. 2019. Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis). Planta 249:363−376 doi: 10.1007/s00425-018-3007-6
[43] Yang Z, Kobayashi E, Katsuno T, Asanuma T, Fujimori T, et al. 2012. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chemistry 135:2268−76 doi: 10.1016/j.foodchem.2012.07.066
[44] Fang Z, Yang W, Li C, Li D, Dong J, et al. 2021. Accumulation pattern of catechins and flavonol glycosides in different varieties and cultivars of tea plant in China. Journal of Food Composition and Analysis 97:103772 doi: 10.1016/j.jfca.2020.103772
[45] Arnon DI. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1−15 doi: 10.1104/pp.24.1.1