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Abstract
WRKY proteins participate in various plant physiological processes, especially in response to stress. However, limited information is available for

WRKY proteins in tea plants. Camellia sinensis WRKY26 (CsWRKY26), a group I WRKY member, was characterized in this study. Tissue specificity of

CsWRKY26 expression revealed that its transcripts are abundant in leaves and roots. Moreover, CsWRKY26 transcripts were markedly induced by

treatments with sodium chloride (NaCl), polyethylene glycol (PEG), drought and different hormones. Ectopic expression of CsWRKY26 conferred

ABA insensitivity and tolerance to transgenic Arabidopsis plants subjected to PEG treatments. When exposed to 15% PEG, the expression levels of

some  stress-tolerant  genes,  such  as responsive  to  dehydration  22 (RD22), 9-cis-epoxycarotenoid  dioxygenase  3 (NCED3),  and Δ1-pyrroline-5-
carboxylate synthetase 1 (P5CS1),  were up-regulated in transgenic plants compared to wild-type (WT) plants. Under natural drought stress, the

growth performance of transgenic lines was better than those of WT plants, consistent with their significantly lower relative electrolyte leakage

(REL) and higher proline content. These findings indicate that CsWRKY26 could enhance drought tolerance in Arabidopsis. This study provides a

potential strategy for future crop improvement research.
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INTRODUCTION

Tea  plants  (Camellia  sinensis)  are  one  of  the  most
economical woody plants[1].  The cultivation of tea originated
in  southwest  China.  However,  unfavorable  conditions  and
extreme climate,  such as  heavy metal  toxicity,  drought,  high
salinity,  ABA  and  temperature  stress,  affect  the  quality  and
yield of tea during the growth of tea plants[2,3].

Transcription  factors  (TFs)  play  vital  regulatory  roles  in
plant  response to  diverse  stresses[4].  Among them,  members
of  the  WRKY  family,  which  are  designated  by  the  WRKYGQK
signature  domain,  widely  exist  in  plants.  WRKY  proteins
usually contain a highly conserved WRKYGQK sequence and a
zinc  finger  motif  (either  C2H2  or  C2HC)  at  their  C-terminus.
Based  on  the  number  of  WRKY  domains  and  the  pattern  of
the zinc finger  motif,  the WRKY family  is  further  divided into
groups  I-III[5−7].  The  first  identified  WRKY  protein,  SPF1,  was
isolated from sweet potato[8]. Subsequently, numerous WRKY
proteins have been identified in different plant species[7,9−11].
Moreover,  the  majority  of  relevant  studies  have  suggested
that WRKY plays a vital role in plant growth and development.
For  example,  Arabidopsis  AtWRKY44  regulates  epidermal
color  and  root  hairs[12,13].  AtWRKY53  and  AtWRKY75  act  as
positive regulators of plant senescence[14,15].

Furthermore,  WRKY  proteins  have  been  discovered  to
respond to abiotic stresses. Arabidopsis AtWRKY57 positively
regulates  drought  stress[16].  AtWRKY63  plays  an  important
role in plant respons to ABA and drought stress[17]. In rice, the

homolog  OsWRKY45  also  acts  in  ABA  signaling  and  drought
tolerance[18].

Growing evidence suggests that group I WRKY proteins are
involved  in  responses  to  abiotic  stress. Gossypium  hirsutum
WRKY25 positively regulates the response to salinity stress in
transgenic  tobacco[19].  Similarly,  wheat  TaWRKY2  and
TaWRKY19  regulate  salt,  drought  and/or  freezing  stress
responses  in  transgenic  Arabidopsis  plants[20].  Arabidopsis
AtWRKY3  provides  resistance  to  herbivory  stresses,  while
AtWRKY25,  AtWRKY26,  and  AtWRKY33  act  synergistically  in
thermotolerance[21].  Jiang  and  Deyholos  showed  that
Arabidopsis  WRKY25  and  WRKY33  function  redundantly  as
positive  regulators  of  the  NaCl  stress  response[22].  Some
recent  studies  have  focused  on  WRKY  factors  in  tea
plants[23−26].  However, the physiological functions of CsWRKY
proteins in abiotic stress are still poorly understood. Here, we
aimed to provide a functional characterization of CsWRKY26, a
member of the group I WRKY family in tea plants. CsWRKY26,
was  a  close  homolog  of  Arabidopsis  AtWRKY26,  AtWRKY25
and AtWRKY33, three well-characterized Group I WRKY family
proteins  with  important  roles  in  plant  thermotolerance,
osmotic  stress  responses,  biotic  stresses  and  camalexin
biosynthesis[21,22,27−29].  In  the  present  study,  we  cloned  and
characterized CsWRKY26 from tea plant cultivar ‘Longjing 43’.
CsWRKY26 was  significantly  induced  by  multiple  abiotic
stresses. Overexpressing CsWRKY26 in transgenic Arabidopsis
increased  resistance  to  drought  stress.  These  findings  may
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provide  new  insights  into  the  abiotic  stress  tolerance
mechanism  of  CsWRKY26,  which  may  serve  as  a  target  for
molecular breeding for crop improvement and enhancement
of stress tolerance. 

RESULTS
 

Isolation and bioinformation analysis of CsWRKY26
The full-length WRKY26 was obtained by high fidelity PCR.

Owing to its high sequence identity with A. thaliana WRKY26,
the WRKY protein was named CsWRKY26. The gene contains
a 1,674 bp  open  reading  frame  encoding  a  557  amino  acid
protein,  with  a  predicted  isoelectric  point  of  8.77  and  a
molecular mass of 61.41 KDa.

CsWRKY26 shared high amino acid sequence similarity with
AtWRKY26,  AtWRKY25,  and  AtWRKY33  (49%,  46%  and  48%
respectively).  Multiple  sequence  alignment  showed  that
CsWRKY26  shared  two  typical  WRKY  DNA-binding  domains,
i.e.,  WRKYGQK  and  one  CX1-5CX22-23HXH  zinc  finger  motif
(Fig.  1a),  which categorized it  as a group I  WRKY superfamily
member[5].  And  the  sequence  of  CsWRKY26  contained  an
extended  C-terminal  domain  (CTD)  compared  to  those  of
AtWRKY33.

To  analyze  the  evolutionary  relationship  of  CsWRKY26
within  group  I  WRKY  subfamily  members  from A.  thaliana,  a
phylogenetic  tree  was  constructed  using  MEGA  6.0  software
(Fig.  1b).  Among  these  proteins,  AtWRKY25,  AtWRKY26  and
AtWRKY33  contribute  to  plant  defense  stress  and  plant
thermotolerance[21],  these  findings  imply  that  CsWRKY26  is
involved in stress response. 

Expression patterns of CsWRKY26 under multiple
stress treatments

Quantitative  RT-PCR  was  performed  to  detect  CsWRKY26
transcript abundance in leaves and roots under osmotic stress

(Fig. 2). In leaves, CsWRKY26 was dramatically induced by NaCl
and  PEG  treatments,  the  transcript  levels  rapidly  peaked
nearly  30  and  70-fold  at  24  h  post  treatment,  respectively.
Additionally, CsWRKY26 was also induced both in sucrose and
mannitol  treatments.  In  roots, CsWRKY26 was  significantly
induced  by  osmotic  stresses  at  the  initial  stages  (1−3  h).
Simultaneously, CsWRKY26 displayed  a  sustained  increase
during  natural  drought  stress  and  rehydration  processes.
These  results  suggest  that CsWRKY26 may  play  important
roles  in  stress  signaling,  especially  in  response  to  osmotic
stress.

To  investigate  the  association  between CsWRKY26 and
some signaling molecules, the expression of CsWRKY26 under
salicylic  acid  (SA),  abscisic  acid  (ABA),  Gibberellic  acid  (GA3)
and  Methyl  Jasmonate  (MeJA)  treatments  was  analyzed  by
qRT-PCR.  As  shown  in Fig.  3, CsWRKY26 displayed  upregula-
tion to some extent under various hormone treatments, with
results  that  could  be  divided  into  three  expression  profiles:
(A)  sustained  upregulation,  peaking  at  6  h  (GA3);  (B)  sharply
increasing  at  the  initial  stage  and  then  decreasing  (ABA  and
MeJA); (C) rapidly increasing in the late stage (SA). It is worth
noting that CsWRKY26 was  significantly  induced by ABA and
MeJA  treatments,  with  more  than  a  5-fold  induction
compared with that under normal conditions. 

CsWRKY26 localized in the nucleus
Subcellular localization of CsWRKY26 was investigated. The

full-length  ORF  of  WRKY26  was  fused  to  the  N-terminal  of
enhanced  green  fluorescent  protein  (eGFP)  and  then  tran-
siently  expressed  in Nicotiana  benthamiana epidermal  cells
(Fig.  4a).  The  control  35S::GFP  showed  green  fluorescence
throughout  the  whole  cell.  Confocal  microscopy  demon-
strated  that  green  fluorescence  was  detected  in  the  nucleus
when  the  CsWRKY26-fusion  protein  was  transformed  in
tobacco. In addition, targeting ability was also determined in
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Fig.  1    Sequence  alignment  and  phylogenetic  tree  analysis  of  CsWRKY26.  (a)  Multiple  sequence  alignment  of  amino  acid  sequences  of
CsWRKY26  with  homologous  WRKYs  from  Arabidopsis.  Sequences  were  aligned  by  the  DNAMAN  program.  (b)  Phylogenetic  analysis  of
CsWRKY26 and Arabidopsis group I WRKY proteins, constructed using MEGA 6.0.
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Fig. 2    Expression patterns of CsWRKY26 gene in tea plants under different abiotic stress. (a) CsWRKY26 transcripts accumulate in leaves under
150 mM NaCl,  90 mM sucrose,  10% (W/V) PEG4000,  90 mM mannitol  stresses.  (b) CsWRKY26 transcripts  accumulate in roots under the same
stress as in (a).  (c)  The fold change of CsWRKY26 in leaves under natural drought stress.  The relative expression levels of the CsWRKY26 gene
were  detected  using  a  qRT-PCR  approach.  Asterisks  indicate  that  the  expression  level  is  significantly  different  from  the  value  of  the  control
(*p < 0.05, **p < 0.01).
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Fig. 3    CsWRKY26 expression in leaves under various hormones treatments. The seedlings were treated with different hormones (100 μM GA3,
100 μM ABA,  5  mM SA and 50 μM MeJA),  and leaves  were harvested for  expression analysis  after  24 h  of  treatment.  The level  of CsWRKY26
expression  were  normalized  to GAPDH and  compared  with  control  conditions.  Data  shown  are  averages  of  three  biological  replicates,  with
error bars representing SD. The asterisks indicate that the expression level is significantly different from the value of the control (*p < 0.05, **p <
0.01).
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CsWRKY26 overexpression  seedling  roots (Fig.  4b),  and
confocal  microscopy  showed  that  CsWRKY26  is  localized  in
the nucleus. 

Tissue-specific expression analysis
The  expression  profiles  of CsWRKY26 was  assayed  by  qRT-

PCR  or β-glucuronidase (GUS)  transcript  under  control  of  the
CsWRKY26  promoter  fragments  (the  1.25  kb  fragment
upstream of the ATG start codon was fused to the GUS open
reading frame).

CsWRKY26 exhibited  high  expression  levels  in  leaves  and
roots, especially in older leaves, which were approximately 17
times  higher  than  that  in  buds  (Fig.  5a).  Meanwhile,
proCsWRKY26::GUS reporter  gene  fusion  constructs  were
investigated  by  histochemical  staining.  Under  normal
conditions,  we detected strong expression in  the whole  7-d-
old seedlings and in the roots and veins of leaves in both 10
and  20-d-old  seedlings.  Among  inflorescence  tissues,
moderate to strong GUS expression was observed in filament,
petal,  stigma,  ovary,  sepal,  and  silique  tissues  (Fig.  5b).
However,  these  mRNA  accumulation  patterns  were
inconsistent with the GUS expression patterns, indicating that
regulatory  elements  beyond  the  promoter  region  may  have

affected  this  result  or  that  the  sensitivity  of  the  reporter
system may be insufficient to detect more moderate changes. 

Overexpression of CsWRKY26 in Arabidopsis
enhances tolerance to osmotic stresses

CsWRKY26 was  induced  by  salinity  and  PEG  treatments
(Fig.  1).  Thus,  to  investigate  whether  CsWRKY26  medicates
the  responses  to  osmotic  stress,  three  independent  trans-
genic Arabidopsis lines (OE1-3) and WT seedlings were subject
to a series of abiotic stress. The root length of WT plants was
slightly  longer  than  those  of CsWRKY26 transgenic  plants
under  normal  conditions  (Fig.  6).  There  was  no  difference
between WT and transgenic plants under salt stress. However,
two lines showed longer root lengths than WT plants both in
the  presence  of  0.3  μM  ABA  and  15%  PEG6000.  Thus,  we
speculate that CsWRKY26 may be involved in ABA-dependent
drought-responsive regulatory pathways during early growth. 

Transgenic Arabidopsis plants expressing CsWRKY26
showed improved drought tolerance

Under  normal  conditions  and  salt  treatment,  the  growth
vigor  of CsWRKY26-overexpression  plants  was  weaker  than
that of WT plants (Fig. 7). However, WT plants exposed to the
15%  PEG6000  treatment  for  7  d  showed  leaf  curling  and
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Fig. 4    Subcellular localization analysis of CsWRKY26 protein. (a) GFP alone (upper panel) and CsWRKY26-eGFP (middle panel) were transiently
expressed  in  tobacco  epidermal  cells.  Representative  images  from  left  to  right  in  each  panel  were  taken  under  fluorescence,  chlorophyll,
transmitted  light  and  an  overlay  of  both  channels.  Scale  bar  =  20  μm.  (b)  Subcellular  localization  of  CsWRKY26-eGFP  in Arabidopsis roots.
Representative images from left to right were taken under fluorescence, bright field and an overlay of both channels. Scale bar = 100 μm.
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atrophy,  while  most  of  the  transgenic  lines  showed
undamaged leaves. Under drought stress for 15 d, leaves from
WT lines were purple with severe wilting compared to those
in the overexpression lines.

Electrical leakage was closely correlated with the degree of
damage  to  cell  membranes  under  various  stresses.  The
relative  electrical  conductivity  (REL)  in  transgenic  plants
under  salt  treatment  was  higher  than  that  of  WT  plants,  but
there  was  no  significant  difference.  Compared  with  WT
plants,  the  transgenic  plants  had  lower  REL  under  PEG6000
and  natural  drought  treatment.  The  chlorophyll  content  of

WT  and  transgenic  leaves  under  drought  treatment  were
assayed.  Both CsWRKY26-overexpression  and  WT  plants
exhibited  increases  in  chlorophyll  content,  whereas
chlorophyll content did not significantly differ between most
transgenic  lines  and  WT  plants.  Meanwhile,  proline  content
varied  among  transgenic  plants  after  salt  treatment.  The
proline content in OE1 and OE2 lines were lower than that in
WT  plants,  but  these  differences  were  not  statistically
significant.  However, OE1 and OE3 lines showed significantly
higher  proline  content  compared  with  that  of  WT  plants
under drought stress (Fig. 7). Collectively, our results indicate
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Fig. 5    Tissue-specific expression patterns of CsWRKY26 gene. (a) Quantitative RT-PCR of CsWRKY26 expression in various tissues: bud, 1st leaf,
2nd  leaf,  3rd  leaf,  old  leaf,  flower,  stem  and  root.  The  transcript  levels  of CsWRKY26 gene  in  various  tissues  were  related  to GAPDH and
compared with that of bud. Asterisks indicate that the expression level is significantly different from the value of the control (*p < 0.05, **p <
0.01).  (b)  Histochemical  staining  of  transgenic  Arabidopsis  with ProCsWRKY26::GUS, (1)  7-d-old  seedling,  (2)  10-d-old  seedling,  (3)  20-d-old
seedling, (4) mature rosette leaf, (5) silique, (6) flowers. Scale bars = 2 mm.
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that CsWRKY26 overexpression  enhanced  drought  stress  in
transgenic Arabidopsis.
 

Expression of stress-related genes in CsWRKY26
transgenic Arabidopsis

To  elucidate  the  regulation  mechanisms  underlying
drought  resistance  in CsWRKY26 overexpression  lines,  we
further  detected  the  expression  profiles  of  stress-responsive

genes (namely DREB2A, RD29A, P5CS1, RD22, NCED3, ABI1, and
ABI5)  in  7-d-old  vertically  grown  seedlings  cultivated  under
drought.  The expression levels of RD29A, NCED3,  and ABI1/-5
were  constitutively  increased  in  transgenic  plants  under
normal  conditions  compared  to  that  of  WT  plants  (Fig.  8a).
Furthermore, the expression levels of NCED3, RD22, and P5CS1
were  significantly  elevated  in  OE1  and  OE3  lines,  which  is
consistent  with  the  proline  content  increases  in  transgenic
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Fig. 7    Phenotype of CsWRKY26-overexpressing transgenic plants and WT plants under different stress conditions. (a) Phenotype of WT and of
CsWRKY26-overexpression Arabidopsis lines grown with or without exposure to salt treatment for 7 d, 15% PEG6000 treatment for 7 d, and a
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lines  (Fig.  8b).  In  addition,  the  stress-related  genes DREB2A
and RD29A were significantly down-regulated, indicating that
CsWRKY26 may be involved in either ABA-dependent or ABA-
independent stress signal transduction pathways. 

DISCUSSION

WRKY  transcription  factors  can  act  as  transcriptional  acti-
vators  or  inhibitors  in response to stress  stimuli[30].  Members
of this family have been reported to participate in responses
to  multiple  abiotic  stresses,  for  example,  Arabidopsis
AtWRKY57/-63[16,17] and  sunflower  HaWRKY76  participate  in
drought  stress  responses[31],  while  Arabidopsis  AtWRKY18/
-25/-30/-60  participate  in  osmotic  stress  responses[22,32,33].
However, the functions of WRKY proteins in tea plants under
abiotic stress have remained unclear.

In the present study, CsWRKY26 was cloned from tea plants.
Two  typical  WRKY  domains  and  a  group  I  CX1-5CX22-23HXH
zinc  finger  motif  (Fig.  3a)  were  observed  in  the  CsWRKY26
sequence[5].  CsWRKY26  showed  high  amino  acid  sequence
identities with AtWRKY25, -26, and -33. Notably, the sequence
alignment  revealed  an  extended  C-terminal  domain  (CTD)
compared  to  those  of  AtWRKY33.  Previous  studies  have
shown  that  the  CTD  in  AtWRKY33  plays  a  vital  role  in  plant
stress  response[34].  Arabidopsis AtWRKY25 or AtWRKY33
overexpression increases the salt  tolerance and sensitivity  to
ABA  of  transgenic  plants[22].  Thus,  it  is  likely  that  the  CTD  of
CsWRKY26 plays vital roles in plant response to stress.

Here, CsWRKY26 was  significantly  expressed  in  salt-  and
drought-induced tea leaves (Fig. 2). This induction is similar to
that  of  soybean GmWRKY16[35],  indicating  that CsWRKY26 in
tea  plants  may  participate  in  coping  with  drought  stress.
Previous  studies  have  shown  that  many  WRKY  TFs  are
involved  in  diverse  hormone  signaling  pathways.  For
example,  OsWRKY24/-53/-70  inhibited  ABA  and  GA  signal
transduction  in  rice  aleurone  cells[36],  while  banana  MaWR-
KY31/-33/-60/-71 positively regulated drought tolerance in its
ABA-dependent pathway[37]; similarly, Arabidopsis AtWRKY28/
-46  activated  the  transcription  levels  of  related  genes  in  the
SA signaling pathway[38]. CsWRKY26 was significantly induced
by  ABA  and  MeJA  hormones  (Fig.  2),  indicating  that  it  may
participate in one or more phytohormone signaling cascades.

Drought is a major abiotic factor limiting growth, adversely

affecting both plant growth and economic benefits.  The role
of WRKYs in drought stress responses have been reported in
many  plants. Boea  hygrometrica BhWRKY1  regulated  the
transcription  level  of  galactosidase BhGolSl (a  key  rate-
limiting enzyme in the oligosaccharide synthesis pathway) in
the  ABA-dependent  signaling  in  response  to  drought  stress;
thus,  the content  of  osmotic  substances  was  increased[39].  In
tobacco, expression of cotton GhWRKY41 or tomato SpWRKY1
conferred  tolerance  to  drought  by  regulating  stomatal
conductance  and  reactive  oxygen  level[40,41].  Overexpression
of  cotton GhWRKY17 increased  sensitivity  to  drought  in
tobacco  by  impairing  ABA-induced  stomatal  closure  and
reducing  the  level  of  ABA[42].  Arabidopsis  AtWRKY40/-18/-60
proteins act as negative regulators of ABI4 and ABI5 genes in
the  ABA  signaling  pathway[32].  Rice  OsWRKY45  confers
resistance  to  drought  stress[18].  In  the  present  study,
CsWRKY26 overexpression  promoted  root  elongation  in
transgenic  Arabidopsis  treated  with  0.3  μM  ABA  or  15%
PEG6000  (Fig.  6).  Moreover, NCED3 (9-cis  epoxycarotenoid
dioxygenase  3),  a  key  enzyme  in  the  ABA  synthesis  pathway
that is involved in drought stress responses[43], was induced in
CsWRKY26 transgenic  plants  under  PEG-simulated  drought
conditions (Fig. 8). Similar functions were also found in other
WRKY genes.  For  example,  overexpressing AtWRKY57 in
Arabidopsis  increased  tolerance  to  drought  by  enhancing
NCED3 expression  and  increasing  accumulation  of  ABA
content[16].

Studies  have  reported  that  osmotic  stress  imposed  by
drought are transmitted through at least two pathways: ABA-
dependent  and  ABA-independent  signaling
pathways[6,16,18,32,42−45]. Notably, in our research, some related
genes involved in those two pathways, such as RD29A, RD22,
and DREB2A,  were  found  to  be  significantly  induced  by
drought  stress,  showing  that  CsWRKY26  may  be  involved  in
the  abscisic  acid  signaling  pathway  (Fig.  8).  Dehydration
response element binding (DREB) TFs play important roles in
plant  stress  response.  Dubouzet  et  al.[46] showed  that
OsDREB1A  and  OsDREB2A,  which  specifically  bound  to  DRE,
were  significantly  up-regulated  in  transgenic  rice  lines,  and
conferred drought tolerance to rice. However, the expression
levels of DREB2A in CsWRKY26-overexpressing transgenic lines
were  significantly  reduced  compared  to  that  of  WT  plants,
which  may  relate  to  sampling  time  (Fig.  8).  Miao  et  al.[47]
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Fig. 8    Analysis of expression levels for stress-related genes in CsWRKY26-overexpressing Arabidopsis lines and WT plants under normal and
15% PEG6000 conditions. Transcript levels of these genes in the transgenic lines and WT plants were determined by quantitative RT-PCR using
Actin2 as a quantification control. Asterisks indicated that the expression level is significantly different from that of the control (*p < 0.05, **p <
0.01). (a) Normal conditions. (b) Simulated drought conditions induced by15% PEG6000.
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showed  that  the  expression  of DREB2A was  significantly  up-
regulated  in  the  early  stage  during  drought  stress  but  later
down-regulated  in MaASR1 transgenic  Arabidopsis  lines.
Proline plays a critical role in plant osmotic stress tolerance by
stabilizing  subcellular  structures  and  maintaining  cellular
functions[48].  Here,  Proline  content  significantly  increased  in
WT  and  transgenic  plants  under  drought  stress.  Meanwhile,
P5CS1 expression  was  significantly  elevated,  consistent  with
the  proline  accumulation  observed  in  transgenic  plants
(Fig.  7).  Similar  regulatory  mechanisms  have  been  found  in
other  studies,  which  have  confirmed that  the  adaptability  of
similar  transgenic  plants  to  drought  stress  is  related  to  the
dehydration  avoidance  mechanism  of  proline  metabolism
regulation[49].

In addition,  WRKY TFs form a complex network with other
TFs  to  regulate  plant  stress.  For  example, Glycine  max
GmWRKY27 interacts with GmMYB174 to suppress GmNAC29
expression and enhance stress tolerance in soybean plants[50].
AtWRKY33 acts downstream of the mitogen activated protein
kinase  genes MPK3 and MPK6 in  reprogramming  camalexin
biosynthesis  genes[51].  Andreasson  et  al.[52] reported  that
MPK4  was  found  to  interact  with  MKS1,  a  VQ  motif  protein
substrate  of  MPK4  substrate,  that  in  turn  interacts  with
Arabidopsis  WRKY25  and  WRKY33.  Zhou  et  al.  (2015)[34]

reported  that  WRKY33  is  an  evolutionarily  conserved  WRKY
transcription  factor  with  a  broad  and  critical  role  in  plant
stress  responses.  However,  most  reports  indicate  that
WRKY25  and  WRKY33  may  be  involved  in  diverse  defense
mechanisms  against  most  stresses[22,27−29].  Notably,  the  MBS
motif  was  found  in  the  CsWRKY26  region,  implying  that
CsWRKY26 may interact with MYB TF to participate in drought
stimuli  (unpublished).  Therefore,  further  research  should
focus on the components related to WRKY26 during drought
stress in tea plants. 

CONCLUSIONS

WRKY proteins play a vital role in response to abiotic stress.
This  study  has  identified  a CsWRKY26 gene  from  tea  plant
cultivar  ‘Longjing  43’. CsWRKY26 was  induced  by  sodium
chloride  (NaCl),  polyethylene  glycol  (PEG),  drought  and
different  hormones  treatments. CsWRKY26-overexpression
transgenic  Arabidopsis  lines  exhibited  tolerance  to  drought
stress.  The  findings  reported  here  shed  new  light  on  the
abiotic stress tolerance mechanism of CsWRKY26, which may
serve as a target for molecular breeding of drought resistance
tea cultivar. 

MATERIALS AND METHODS
 

Plant materials and growth conditions
‘Longjing  43’  (LJ43),  a  very  popular  and  famous  green  tea

(in  particular  for  Longjing  tea)  cultivar  bred  by  the  Tea
Research  Institute  of  the  Chinese  Academy  of  Agricultural
Sciences (TRICAAS),  was used in this  study.  The buds,  leaves,
stems,  flowers  and  roots  were  collected  for  tissue-specific
analysis  from  seven-year-old  tea  plants,  grown  in  China
National  Germplasm  Hangzhou  Tea  Repository  of  the
TRICAAS.

Two-year-old  rooted  cuttings,  similar  in  both  size  and

growth  stage,  were  grown  in  pots  inside  the  greenhouse  of
TRICAAS.  These  cuttings  were  subject  to  various  abiotic
stresses,  such  as  natural  drought,  150  mM  NaCl,  10%  (W/V)
PEG4000,  90  mM  sucrose  or  mannitol,  and  different
hormones  including  100  μM  abscisic  acid  (ABA),  100  μM
gibberellic acid (GA3), 50 μM Methyl Jasmonate (MeJA) and 5
mM  salicylic  acid  (SA)  treatment.  Different  treatments  were
performed  as  previously  described[53].  For  various  osmotic
treatments,  the  functional  leaves  (the  third  leaves  from two-
year-old  rooted  cuttings  of  tea  plants)  and  roots  were
sampled  at  0,  1,  3,  6,  12,  or  24  h.  For  phytohormone
treatments, the functional leaves were harvested at 0, 3,  6 or
24  h  post-treatment.  For  natural  drought  stress,  the
functional  leaves  were  harvested  from  two-year-old  rooted
cuttings of tea plants by withholding water for 25 d, 35 d and
re-watering after 2 d. All samples were immediately frozen in
liquid  nitrogen  and  stored  at  −80  °C  before  analysis.  All
treatments contained at least three biological replicates.

Healthy  leaves  from  tobacco  (Nicotiana  benthamiana)
grown  for  2−4  weeks  were  used  for  protein  subcellular
localization.  The  seeds  of Arabidopsis  thaliana were  surface
sterilized, vernalized for 3 d at 4 °C, and plants were grown on
1/2 Murashige and Skoog (MS) medium. Plants were analyzed
on  plates  or  transplanted  to  a  sterilized  soil  7  d  after
germination.  Arabidopsis  plants  were  grown  in  growth
cabinets at 22 ± 1 °C under long day (LD, 16 h /8 h day/night
cycle)  photoperiods,  while  tobacco plants  where maintained
at 24 ± 2 °C under a photoperiod of 12 h /12 h day/night. The
light intensity was at approximately 108 μmol/m2s. 

Cloning of CsWRKY26 genes and phylogenetic
analysis

Total  RNA  was  extracted  from  different  tissues  of  LJ43
using  QIAGEN  RNeasy  Mini  Kit  and  a  reverse  transcription
reaction was performed using a FastKing gDNA Dispelling RT
SuperMix Kit  (KR118).  The full-length sequence of CsWRKY26
was cloned using KOD DNA polymerase. The specific primers
are  listed  in Supplemental  Table  S1.  Polymerase  chain
reaction (PCR) product was purified from agarose gel, and the
purified  product  was  cloned  into  the  pEASY-Blunt  simple
vector  (Transgen  Biotech  Co.,  Ltd.,  Beijing,  China).  Multiple
sequence alignments of CsWRKY26 in C. sinensis and Group I
WRKY members in A. thaliana were performed in MEGA6.0 by
the neighbor-joining method with 1000 bootstrap replicates. 

Expression profiles analysis of CsWRKY26
The  expression  analysis  of CsWRKY26 were  detected  by

real-time quantitative polymerase chain reaction (qRT-PCR) or
histochemical  staining  of β-glucuronidase  (GUS).  For  GUS
staining,  the  homozygous  promoter-WRKY26::GUS
(proCsWRKY26::GUS)  transgenic  Arabidopsis  plants  were
immersed  in  0.5  mg/mL  XGluc  (5-bromo-4-chloro-3-
indolylglucuronide)  solution  in  100  mM  sodium  phosphate
buffer  (pH  7.0),  10  mM  EDTA,  1  mM  K4Fe(CN)6,  1  mM
K3Fe(CN)6,  0.5%  Triton  X-100,  and  incubated  at  37 °C  in  the
dark  as  previously  described[54].  Tissue  was  cleaned  in  70%
ethanol before the visualization.

The glyceraldehyde-3-phosphate  dehydrogenase (GAPDH)
gene  was  used  as  the  housekeeping  gene.  And  the  gene
expression  levels  were  calculated  using  the  2−ΔΔCt or  2−ΔCt

method[55,56]. 
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Generation of CsWRKY26 overexpression lines
For  overexpression  analysis,  the  35S::CsWRKY26 plasmid

was  generated,  carrying  the  coding  sequence  of WRKY26 in
the  binary  destination  vector  pH7FWG2.0.  Floral  dip-
transformation of  the plasmid into Arabidopsis  cv.  Columbia
(Col-0)  resulted  in  at  least  three  independent  transgenic
Arabidopsis lines selected by growth on plates containing 30
μg mL–1 hygromycin B[57].

For  subcellular  localization  prediction  of  CsWRKY26
protein, the pH7FWG2.0-CsWRKY26 was expressed in tobacco
leaf  epidermal  cells.  Plants  were  incubated  for  48  h  before
fluorescence  imaging  using  a  Nikon  C2-ER  confocal  laser
microscope. In addition, GFP signals were also detected in the
young roots of CsWRKY26 overexpression lines.

For  promoter-β-glucuronidase (GUS)  fusion,  the  promoter
region  of  WRKY26  from C.  sinensis was  amplified  by  high
fidelity  PCR.  The  identified  fragment  was  inserted  into  the
pBI101.3-GUS plus vector.  The recombinant proWRKY26::GUS
was  introduced  into  the A.  tumefaciens strain  GV3101  using
the  freeze-thaw  method  and  introduced  into  Arabidopsis
using the floral  dip method[57].  Homozygous transgenic lines
were  used  in  subsequent  experiments.  The  amplification
primers are listed in Supplemental Table S1. 

Abiotic stress analysis of CsWRKY26-overexpression
transgenic plants

The seeds of wild type (WT) and CsWRKY26 overexpression
lines  were  planted  on  1/2  MS  medium  for  4  d,  and  then
transferred to 1/2 MS or 1/2 MS medium containing 150 mM
NaCl, 15% PEG6000 or 0.3 μM ABA for 10 d. For osmotic stress
assay,  4-week-old  transgenic  plants  and  WT  plants  were
irrigated with a final concentration of 250 mM NaCl for 7 d. To
elevate  drought  tolerance,  4-week-old  plants  were  stopped
irrigation for 15 d or subjected to 15% PEG6000 for 7 d. 

Measurement of physiological index
The  sterilized  and  vernalized  seeds  of  WT  and CsWRKY26

overexpression  plants  were  germinated  on  1/2  MS  medium
for  7  d,  and  then  transferred  to  41  mm  Jiffy  seedling  blocks.
Plants were grown in a light incubator for three weeks. After a
7-d  period  of  salinity,  15%  PEG6000  treatment,  or  natural
drought  stress  treatment  for  15  d,  the  rosette  leaves  were
collected  for  measuring  the  REL,  proline  and  chlorophyll
content.  The  REL  was  measured  as  described  by  Wang  et
al.[58]. Proline accumulation was assayed using the proline test
kit  cat.  A107  (Nanjing  Jiancheng  Bioengineering  Institute,
Nanjing,  China).  The  chlorophyll  content  from  each  sample
was estimated as previously described by Li et al.[59]. 

Analysis of stress related genes by qRT-PCR in
transgenic plants

Four-d-old  seedlings  were  placed  vertically  in  1/2  MS
medium  with  or  without  15%  PEG6000  for  7  d,  and  then
sampled  for  RNA  isolation. Actin-2 gene  act  as  the  reference
control gene, and the 2−ΔΔCt method was used to evaluate the
relative  expression  level.  All  qRT-PCR  experiments  contained
three biological replicates. 

Statistical analysis
Each  experiment  described  in  the  research  contained  at

least  three  biological  replicates.  Statistical  analysis  was
performed  using  the  one-way  analysis  of  variance  (ANOVA).

And  the  Built-in  Functions  in  Excel  2019  was  used  for
statistical analysis.
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