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Heterogenous  distribution  of  crops,  feed  and  livestock
across China has halted the circulation of nutrients within the
agricultural  system  and  is  responsible  for  massive  nutrient
losses[1,2]. Generated livestock manure exceeded optimal crop
requirements in 30% and 50% of over 2 300 studied counties
when  there  was  improved  recycling  of  nitrogen  (N)  and
phosphorus (P) in the food chain, repectively[2]. Most of these
counties  are  located  in  southern  and  coastal  areas,  whereas
there is a deficit of livestock manure in northern and western
China.  Such  heterogenous  distribution  of  crop-livestock
production  led  to  4.0  Tg  manure  N  and  0.9  Tg  manure  P[2],
which are economically impossible to recycle and will end up
in  the  surrounding  environment.  In  addition,  about  40%  of
feed  protein  consumed  by  domestic  livestock  production
relied  on  importation,  putting  China’s  livestock  production
supply  at  high  risk  in  the  post  pandemic  world[3].  Hence,
China is facing the twin issues of too many manure nutrients
but too little feed nutrients simultaneously. Such mismatch of
feed  protein  demand  and  manure  nutrient  production  is
more  severe  at  the  regional  level  due  to  the  heterogenous
distribution  of  crops,  feed  and  livestock  within  China,  which
may further impact sustainable livestock production.

Heterogenous  distribution  of  crop-livestock  production
sites has also led to region-specific conservation activities. For
example,  southern  China  has  suffered  from  severe  water
pollution,  resulting from intensive watercourse and livestock
production,  leading  to  lower  capacities  for  crop  nutrient
uptake[4].  Hence, the central government initiated the south-
to-north  pig  transfer  project  in  which  southern  farms  were
closed  and  northern  ones  established  to  effectively  manage
water  pollution[5].  This  will,  however,  increase  ammonia
emissions  in  northern  China,  a  region  already  suffering  from
high  PM2.5 levels  that  are  in  part  due  to  ammonia  emissions
generated from livestock production[6,7].

Recently,  treatment  and  the  recycling  of  manure  have
received greater attention from the public and policymakers.
The  central  government  has  tightened  environmental
regulations  on  livestock  manure  management,  aiming  to
promote  the  recycling  of  manure  to  reduce  losses[8].  New

regulations require manure to be treated for parasites, e. coli,
flies  and  mosquitos  prior  to  field  application.  However,  this
policy  has  overlooked  the  possible  increase  of  ammonia
emissions  from  this  mandatory  manure  processing.  Increa-
sing  ammonia  emissions  may  have  large  impacts  on  the
quality and biodiversity richness of plants in some protected
and  ecologically  sensitive  regions,  contradicting  the  newly
released ecological  protection and restoration polices by the
National Development and Reform Commission[9].

Current  environmental  regulations  on  livestock  manure
treatment  overlook  environmental  risk  as  well  as  region-
specific requirements and conditions.  Treatment and circular
manure  systems  across  different  regions  are  both  necessary,
but  China  lacks  technologies  and  relevant  system  designs,
despite a long history of manure application. Lessons learned
abroad, where there is oftentimes less heterogeneity of crop-
livestock  production,  may  be  difficult  to  adapt  to  China.  For
example,  in  the  Netherlands,  a  country  with  high  livestock
density  and  a  surplus  of  nutrients,  manure  recycling  and
processing is far-reaching and well developed. Around 25% of
its  annually  produced  manure  is  exported  to  neighboring
countries  after  being  heated  at  70  °C  for  one  hour[10].
However,  such  transregional  transportation  costs  could
contribute  up  to  10%  of  total  production  costs  in  livestock
farms in the Netherlands[11]. In China, the lower profitability of
livestock production and longer transportation distances limit
the  possibility  of  transnational  or  trans-provincial  transpor-
tation of  manure,  especially  when large surpluses of  manure
are located in South China with deficits more common in the
Northeast[2].  Lessons  and  technology  systems  from  the
Netherlands are difficult to adapt to China, particularly given
the recent controversial ban of agricultural production due to
ammonia  emissions  in  protected  regions  in  the
Netherlands[12]. 

Requirement for region-specific manure treatment
strategies and technologies

We  argue  the  need  for  designing  new  region-specific
manure  recycling  and  treatment  strategies  to  combat
environmental  pollution,  reduce  reliance  on  imported  feed
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and  protect  vulnerable  ecosystems  in  China.  The  criteria  for
the  design  of  such  a  system  should  seriously  consider  the
following  elements:  (i)  recycling  nutrients  in  the  food  chain;
(ii)  local  livestock  feed  self-sufficiency;  and  (iii)  county-level
human  health  and  ecosystem  vulnerability  to  ammonia
emission.

All  regions  are  categorized  into  three  groups  according
their  status:  regions  (Region  I)  with  an  excess  of  manure
nutrients,  increased  sensitivity  to  ammonia  emissions  and
lack of feed that should implement new modern technologies
to treat manure with low ammonia emissions, high efficiency
and  rapid  manure  dewatering,  liquid  manure  nutrient
concentration  and  feed  protein  production  technologies,
which  will  allow  exporting  excess  manure  nutrients  to  other
regions  while  increasing  internal  recycling  of  manure
nutrients  as  feed  protein  (Fig  1, 2);  regions  (Region  II)  with
moderate soil nutrient carrying capacities featuring sensitivity
to ammonia emissions that should more focus on solid-liquid
manure  separation  and  solid  manure  dewatering  to  allow
exporting  solid  manure  and  in-situ  application  of  liquid
manure within region (Fig 1, 3); and regions (Region III) with a
deficit  of  manure  nutrients  featuring  no  sensitivity  to
ammonia  emissions  and  feed  protein  supply  that  should
implement  little  or  no  treatment  technologies  to  allow  the
full potential recycling of manure nutrients on farms (Fig 1, 4).

Through using information from over 2,300 counties, inclu-
ding crop nutrient uptake, whole food chain nutrient manage-
ment, ammonia emissions and self-sufficiency of feed protein,
we  have  developed  the  first  region-specific  designation  of
manure  treatment  technologies  in  China (Fig  1).  Categori-
zation  was  carried  out  at  the  city  level  with  over  360  cities
included  due  to  the  strong  role  of  city-level  governments  in

providing subsidies to technology companies and farms. This
illustrative  example  shows  that  the  total  area  of  Region  I
covers around 14.3 million ha cropland (12% of the manure N
production),  and  Region  II  and  III  cover  the  remaining  97%
and 88% of cropland and manure N production,  respectively
(Fig 1). 

Strategies and technology systems for Region I
Region  I  is  generally  located  in  southeast  China,  mainly  in

Guangdong, Fujian and Hainan Provinces as well as the cities
of Beijing and Tianjin (Fig 1). Technology system concepts are
shown in Fig 2. Generally, livestock farms in Region I need to
implement  strict  ammonia  mitigation  options  in  animal
housing,  such  as  frequent  cleaning,  air  purification  and
filtration.  Region  I  has  a  lower  capacity  to  recycle  manure,
hence there is less need for storing large amounts of manure
as  most  of  it  is  regularly  treated.  Solid  manure  should  be
dewatered  via  advanced  reactor  composting  technology,
most of which is either directly exported outside of the region
or  used  to  produce  insect  feed  to  feed  animals  (Fig  2).  The
liquid part of manure needs to be treated via reverse osmosis
technology  to  concentrate  nutrients,  allowing  for  long-
distance  transportation.  Summarized,  the  three  main  proper
treatments  of  manure in  Region I  are  as  follows:  i)  advanced
reactor  composting  technology;  ii)  efficient  liquid  manure
nutrient  concentration  technologies;  and  iii)  feed  protein
production technologies.

Reactor  composting. Reactor  composting  technology  is
an  effective  and  environmentally  friendly  method[13].  The
well-controlled  temperature  and  aeration  in  closed  vessels
achieves  the  elimination  of  pathogens,  parasites  and  weed
seeds  within  7−10  days,  with  more  than  90%  of  antibiotics
and  their  resistance  genes  undergoing  degradation[13].
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Fig. 1    Flow chart dividing all cities into three different manure treatment and recycle regions.
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Combined with a serial exhaust gas bio-filtration system, zero
emission of ammonia, GHG and odor could be achieved[14,15].
Meanwhile,  fresh manure generated in  livestock farms could
be  feeding  into  reactors  continuously,  combined  with
manure  cleaning  systems  in  animal  housing.  Closed
composting  reactors  play  the  role  of  both  storage  and
treatment for manure that shortens the manure management
chain. Its high efficiency and small size make it an ideal in-situ
manure  treatment  method  for  intensive  livestock  farms.  It
could  thus  be  used  both  in  Region  I  and  II  to  achieve  NH3

mitigation  and  convert  manure  into  high-quality  organic
fertilizer  that  benefits  manure  nutrient  transportation  and
epidemic prevention.

Liquid  manure  concentration. Reversed  osmosis  (RO)  is
based on the ability  of  RO-membranes to let  water  pass and
block  salt  ions.  The  technique  is  widely  used  for  the
desalination  of  sea  water.  Recently,  the  application  of
selective  electrodialysis  with  monovalent  exchange  mem-
branes  on  the  recovery  phosphate  or  ammonium  from
sewage water and livestock slurry has been investigated as a
promising technique, and the technology has performed well
in  the  Netherlands.  Recovery  efficiency  of  ammonia  could
reach  78%  and  75%  of  phosphate  and  87%  of  volatile  fatty
acids via using a bipolar membrane electro-dialysis system[16].
After  treatment,  20%  of  mass  was  retained  in  the  solid

fraction, while 30% and 50% was retained in the concentrate
and  permeate  material.  The  volume  of  concentrate,  which
contains  higher  concentration  of  ammonium-N,  K  and  other
elements,  could  be  further  reduced  via  use  ventilating
heat[17]. The effectiveness of nutrients in the concentrate was
comparable  to  granulate  chemical  fertilizer  (calcium-
ammonium-nitrate),  a  common  fertilizer  in  European
countries.  The Netherlands began pioneering experiments in
2009,  and  in  total,  eight  large  pilot  plants  have  successfully
treated  slurry[17].  These  could  serve  as  good  examples  for
Region  I  in  China  as  nutrients  in  liquid  slurry  are  effectively
concentrated,  allowing  long-distance  transportation  to  get
rid of excess manure nutrients.

Feed  protein  production. The  use  of  insects  for  animal
manure  management  is  a  sustainable  and  low-cost
technology that  effectively  reduces  the volume and nutrient
concentration of manure residue, thereby reducing potential
pollution.  The  black  soldier  fly  larva  (BSFL),  one  of  the  most
powerful recyclers, can reduce the bulk of manure residue by
56% and nutrient concentrations by 40%−55% within 14 days
of  manure  breeding[18].  Besides  effectively  degrading
antibiotics in the manure[19], BSFL can also greatly reduce the
abundance of  pathogenic bacteria[20],  decrease the offensive
odor[21] and  inhibit  the  breeding  of  house  flies[22].  Few  pilot
plants  have  initiated  commercial  level  production.  Henan
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Fig.  2    Technical  model  diagram  of  region  I,  including:  reactor  composting,  liquid  manure  concentration  technologies  and  freed  protein
production.
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Enzyme  Company  has  developed  a  pilot-scale  automated
BSFL breeding facility to treat pig manure and produce insect
proteins[23]. Through cloud technology, the device can upload
data  in  real-time,  and  the  controller  can  adjust  and  monitor
the  parameters  of  the  breeding  workshop  through  mobile
application  or  computer.  The  facility  can  completely
decompose  3.24  tonnes  (78%  moisture)  of  pig  manure  per
day  and  produce  480  kg  of  insect  biomass.  This  effectively
reduces  the  volume  and  nutrient  concentration  of  the
manure  residue,  thereby  reducing  potential  pollution  by  at
least  50%−60%[18].  BSFL  biomass,  containing  about  40%
protein  and  30%  fat[24],  can  be  used  as  a  substitute  for
soybean  and  fish  meal  for  feeding  poultry  and  fish  without
causing  adverse  reactions[25].  Through  the  recycling  of
insects, the twin problems of excessive manure nutrients and
shortage of feed in Region I can be addressed simultaneously.
An  alternative  choice  is  microalgae  protein  production.
Recently,  microalgae  have  been  considered  as  a  promising
solution  for  wastewater  management  owing  to  their  high
capacity to deplete inorganic nutrients (N and P) from a wide
range  of  wastewater[26].  Microalgae  could  use  wastewater
effluent  as  a  source  of  carbon  and  nitrogen  to  support  their
rapid growth and be converted to microbial protein as animal
feed after proper filtration, concentration and drying. 

Strategies and technology systems for Region II
Region II covers major cropland production areas in China,

excluding  the  northeast  and  Region  I  (Fig  1).  These  area

shows  a  moderate  level  of  ammonia  emission  intensity,
manure  loading  capacity  and  feed  self-sufficiency;  accor-
dingly, attention should focus on the trans-regional recycling
of  manure  with  less  emphasis  on  complex  and  high-cost
treatment  technologies.  The  core  recommended  technology
system  is  solid-liquid  separation  in  which  solid  manure  is
dewatered  via  closed  reactor  composting,  transported
between  regions  and  liquid  manure  injected  to  fields
adjacent livestock farms.

Efficient  solid-liquid  separation  system. Solid-liquid
separation  can  be  divided  into  sedimentation,  drainage,
centrifugation  and  pressure  filtration  (Fig  3).  Centrifugal
separation is the most effective method for slurry separation,
with  the  highest  removal  rate  of  total  solids  reaching  up  to
60%[27]. However, centrifugal equipment is used relatively less
in China due to its high price, high energy consumption and
demanding  maintenance.  Pressurized  filtration,  including
screw  press  and  press  auger,  is  usually  more  efficient  than
screening  technology.  Improving  pressure  can  increase  the
removal rate of solids and accelerate the removal of nitrogen,
phosphorus,  potassium  and  other  nutrient  elements.  This
technology  is  suitable  for  widespread  application  in  China
due  to  lower  costs[28].  In  addition,  flocculent  can  be  used
before separation to improve separation efficiency.

Liquid  manure  injection  or  irrigation. Liquid  manure  is
rich  in  N  after  separation,  which  can  be  connected  to  the
irrigation system through the pipe network or transported to
the  farmland  and  applied  with  supporting  agricultural
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Fig. 3    Technical model diagram of region II, including: efficient solid-liquid separation and liquid returned to field.
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machinery  as  liquid  fertilizer.  Liquid  fertilizer  can  be  diluted
directly  into  irrigation  water  for  field  application,  but  the
spread  of  nutrients  on  the  field  surface  may  be  uneven[29].
Liquid fertilizers can be applied to fields by spraying vehicles,
but  it  may  cause  the  evaporation  of  ammonia  and  odors[30].
Deep  soil  injection  could  reduce  ammonia  emissions.  Fecal
injection  could  be  combined  with  seeding,  reducing  costs
and  improving  seeding  rates,  especially  in  dry  regions  and
seasons.  In  the  Netherlands,  strict  regulations  of  manure
application  have  promoted  the  development  and
manufacturing  of  equipment  related  to  liquid  fertilizer.  The
disc-type fertilizer applicator is an injection machine with disc
harrow  capable  of  simultaneous  stubble  crushing,  land
overturning  and  manure  injecting[31,32].  In  China,  use  of  the
liquid  injection  machine  is  relatively  unexplored.  However,
injecting  liquid  fertilizer  can  greatly  improve  the  utilization
rate of fertilizer and reduce pollution.  Li  et al.  (2020) showed
that  integrating seedings  with  liquid  manure injection could
replace  50%  of  mineral  N  fertilizer,  reduce  ammonia
emissions  by  27%−49%  and  increase  corn  grain  yield  by
17%−33%[33]. 

Strategies and technology systems for Region III
Region  III,  largely  found  across  Xinjiang,  Inner  Mongolia

and  Northeast  China,  has  an  abundance  of  feed  resources,
with  higher  manure  nutrient  loading  capacity  and  lower
sensitivity  to  ammonia  emissions.  These  regions  usually
feature  larger  farms,  which  require  fewer  manure  treatment
technologies  but  better  manure  storage  facilities.  This  is
because  these  regions  have a  single  cropping system that  is

different  from  Region  I  and  II.  This  indicates  manure  could
only  be  applied  once  per  year  in  these  regions.  An  ideal
model  for  Region  III  is  shown  in Fig  4.  This  model  is
characterized  by  manure  storage  and  in-situ  field  applica-
tions.  Manure  needs  to  be  stored  in  belowground  concrete
tanks  for  almost  one  year.  Coverage,  which  reduces  the
timing for manure exposure in the air and resulted in reduced
emissions  of  NH3,  odour[34,35] as  well  as  surface  acidification,
further decreasing NH3 emissions with lower cost[36],  are two
favorable technologies to preserve N in manure during long-
term  storage.  Applying  the  slurry  in  accordance  with  the
principles  of  4R  nutrient  stewardship,  that  is,  applying  the
slurry  at  the  right  place,  rate,  time  and  type[37,38],  could  also
be used to help treat storage manure. 

Policy implications
We  used  current  data  to  demonstrate  an  approach  to

designing  region-specific  technology  systems  for  the
treatment and recycling of manure in China, and we provided
an  illustrative  example  in Fig  1.  This  is  a  preliminary  analysis
based  on  limited  data  and  broad  assumptions,  and  more
research is needed to improve the granularity of such designs
by  quantifying  water  and  airborne  pollution  as  well  as
landscape  and  transportation  costs  at  the  regional  level.
Furthermore,  region-specific  manure  management  designs
could  become  part  of  the  recently  implemented  rural
revitalization[39] and Blue-Sky actions[40].

The  ultimate  goal  of  manure  treatment  is  to  reduce
environment  impacts  by  recycling  it  as  either  fertilizer  for
crop  production  or  feed  protein  for  livestock  production.
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Fig. 4    Technical model diagram of region III, including: manure storage and in-situ field application.
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However, in China, livestock has been largely decoupled from
crop  production  in  terms  of  exchange  between  feed  and
manure  at  both  the  farm  household  and  regional  scale.  The
share  of  rural  households  with  both  crop  and  livestock
production  has  declined  from  71%  to  12%  in  the  period
between  1986  to  2017[41].  A  recent  nation-wide  survey
revealed that only 1/3 of farmers were willing to use manure
as  fertilizer  in  cereal  crop  production[42] due  to  concerns  of
cost,  odor,  antibiotics  and  heavy  metal  issues.  Recycling  of
manure-based  insect  feed  protein  to  livestock  production  is
also  a  controversial  issue  in  terms  of  consumer  acceptance.
These  obstacles  could  be  alleviated  via  strict  feed  quality
control regulations and public education campaigns. 

MATERIAL AND METHODS

The  criteria  used  in  this  study  included  soil-bearing
capacity,  local  livestock  feed  self-sufficiency  rate  and
ecosystem  vulnerability.  The  soil-bearing  rate  refers  to  the
ratio  of  total  excretion of  N by livestock and humans as  well
as the N withdrawal of harvested crops. In the present study,
the soil-bearing capacity was estimated based on the NUFER
(NUtrient  flow  in  Food  chains,  Environment  and  Resources
use)  model,  which  calculates  all  nutrients  for  each  city.  The
equation used to calculate soil bearing capacity was:

N soil = N human manure + N livestock manure
N plant uptake + N grass

(1)

Where N soil is soil bearing capacity, N human manure is the
N  content  from  human  manure  (tonnes  N  yr−1), N livestock
manure is  the  N  content  from  livestock  manure  (tonnes  N
yr−1), N plant  uptake is  N  content  taken  by  plants  (tonnes  N
yr−1)  and N grass is  the  N  content  taken  by  grass.  The
estimated soil  bearing capacity  was summarized in Fig 1.  Jin
et  al.  (2020)  claimed  that  2  was  the  threshold  value  for  the
soil-bearing capacity in China, which means areas with values
higher  than  2  were  considered  low  soil-bearing  capacity[2].
Across  China,  19%  of  the  total  area  was  lower  than  2  and
considered  as  having  high  soil-bearing  capacity.  Conversely,
areas  higher  than  2  were  considered  as  having  low  soil-
bearing capacity.

The  feed  self-sufficiency  rate  refers  to  the  ratio  of  domes-
tically consumed feed supplied by domestic producers. Local
livestock  feed  self-sufficiency  rate  was  estimated  based  on
livestock  consumption  and  feed  production.  The  equation
used was:

N ratio =
N total cons − N imported + N exported

N total cons
(2)

Where N  ratio is  livestock  feed  self-sufficiency  rate  and N
total  cons is  the  total  N  consumption  for  each  category  of
livestock  (sheep,  cattle,  pig,  poultry,  horse,  rabbit,  mule  and
donkey).  N  imported  is  feed  N  imported  from  other  areas.  N
exported is feed N exported to other areas. The distribution of
livestock  feed  self-sufficiency  rate  across  China  is  shown  in
Fig  2.  The  present  study  designated  0.7  as  the  threshold
value,  and  values  higher  than  0.7  were  defined  as  high
livestock  feed  self-sufficiency  rates.  As  seen  in Fig  2,  high
livestock  feed  self-sufficiency  rates  (exceeding  0.7)  were
mainly located in northern and western China China.

Ammonia  emissions  considered  here  include  NH3 from
crop  and  animal  production.  The  amount  of  total  ammonia

emissions  was  estimated  by  the  NUFER  model (Fig  3).  The
SDGs  report,  EU  SDG  index  scores  and  ammonia  data  are
reported  for  each  country.  Using  this  data,  the  relationship
between SDG index scores and ammonia emissions data was
established  through  multiple  linear  regression  analysis.  The
statistical model (R2 = 0.91, n = 23) used was:

Ammonia = −1.4Score + 104.9 (3)

Where Ammonia is ammonia emission per agricultural land
(kg  ha−1)  and  Score  is  the  SDG  index  score.  SDGs  report
designated  a  score  of  60  as  the  threshold  for  European
countries,  and  this  present  study  assumes  the  European
standard as the corresponding limit for China. Therefore, this
statistical modeling can provide the ammonia threshold value
(31  kg  ha−1)  for  the  designated  60  score.  As  seen  in Fig  3,
higher  ammonia  emissions  (higher  than  31  kg  ha−1)  were
found in southeastern regions.

The  total  land  area  of  China  was  divided  into  3  regions,
each  of  which  in  turn  contains  two  or  more  ecosystem
statuses  (Fig  4):  regions  (Region  I)  with  high  ammonia
emissions,  low  soil-bearing  capacity  and  low  livestock  feed
self-sufficiency  rates;  regions  (Region  II)  with  low  ammonia
emissions,  low  soil-bearing  capacity  and  low  livestock  feed
self-sufficiency  rates;  and  regions  (Region  III)  with  low
ammonia  emissions  and  high  soil-bearing  capacity.  This
process  was  compiled  in  ArcGIS  10.6  in  which  areas  were
selected  by  overlaying  different  criteria  layer  (ecosystem
status layers). 
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