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Abstract
In this overview paper, we outline and explore problems and prospects for circular agriculture’s contributions to transformative change toward

sustainable food systems in the Anthropocene. We define circular agriculture (CA) and provide historical context on its development. We then

discuss how CA can contribute to food system transformations in four key areas: multi-functional landscapes; sustainable intensification (focusing

on nitrogen/crop-livestock management and digital agriculture); smallholder farmers; and dietary change. We find that food systems transitions

will be challenging due to the depth, scale, and speed of changes necessary for humans to remain within safe planetary boundaries out to 2050.
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INTRODUCTION
 

The State of Global Food Systems
In  the  modern  era,  humans  have  not  often  attempted  to

intentionally design a food system at any scale much beyond
a  local  farm  or  limited  region.  In  2021,  however,  it  is
increasingly  clear  that  profound  transformation  across
multiple  levels  is  required  in  how  we  produce  and  consume
food  if  we  are  to  stay  within  safe  planetary  boundaries  on
Earth[1,2,3].  This is  evident from the scientific literature as well
as recent reports on achieving sustainable food systems from
major international organizations[4,5,6].

The  common  catch  phrase  in  this  literature  is  that
fundamental,  or  transformative change is  needed within our
food  systems,  where  ‘transformative’  means  'system-wide
reorganization  across  technological,  economic,  and  social
factors,  making  sustainability  the  norm  rather  than  the
altruistic  exception'[7].  In  this  sense,  food  systems  include  all
elements  (nature,  people,  institutions,  governance)  and
actions  (from  production  through  consumption)  along  with
their  environmental,  economic,  and social  outcomes[8,9].  This
expansive  definition  is  rooted  in  a  social-ecological  systems
perspective  on  nature  and  people  in  which  both  environ-
mental  and human factors are considered in relation as they
are  mutually  shaped  by  key  drivers,  interact  across  many
scales,  exhibit  complex  dynamics,  respond  to  multiple  feed-
backs,  and  are  subject  to  uncertainty  and  change  over
time[10].

If  the  goal  of  a  sustainable  food  system  is  the  delivery  of
food and nutritional security for all people over the long-term

with limited environmental degradation, then the biophysical
basis  for  transformative  change  is  obvious.  Croplands  cover
about one third of terrestrial land on Earth[11] and agricultural
activities  contribute  about  26%  of  total  global  greenhouse
gas  emissions[12].  Food  systems  are  the  primary  driver  of
biodiversity  loss  and  ecological  degradation[11],  the  largest
contributor  to  freshwater  consumption[1],  and  are  major
sources  of  multiple  pollutants  including  nitrogen[13],
phosphorus[14],  heavy  metals[15],  antibiotics[16],  and
microplastics[17].  If  all  non-food  greenhouse  gas  emissions
ended  immediately,  food  systems  emissions  alone  would
likely carry us beyond a 1.5C rise in global temperature soon
after 2050[18].

Staying  within  safe  planetary  boundaries,  however,  is  not
just  about  the  biophysical  elements  of  food  systems;  the
social aspects are equally important within a social-ecological
framework.  And,  since  2014,  in  spite  of  six  years  of  imple-
mentation of the food-oriented targets of the United Nations
(UN)  Sustainable  Development  Goals  (SDGs),  global  food
insecurity  has  been  growing,  with  the  number  of  hungry
people  reaching  690  million,  about  9%  of  the  human
population[19].

The  above  data  portray  elements  of  food  security  before
COVID-19.  The number  of  additional  undernourished people
resulting from impacts from COVID-19 is modelled to increase
83-150  million  by  the  end  of  2021[20],  and  projections  show
that  there  may  be  up  to  840  million  hungry  people  by
2030[19]. Therefore, the virus is seen by many as a wake-up call
that  has  brought  social  vulnerabilities  into  focus  across
multiple  elements  of  food  systems,  including  farmer  and
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laborer  vulnerability,  global  supply  chains,  import/export
trade policy, and more[21,22]. Yet, as of the beginning of 2021,
individual  country  responses  to  strengthen  food  systems
have  been  minimal,  despite  multiple  calls  from  international
agencies and researchers to link food security measures with
expanded support for public health.

As COVID-19 spotlights weaknesses in food systems, other
trends  continue  to  put  inexorable  pressure  on  conventional
agricultural  activities.  Total  greenhouse  gas  emissions  are
projected to increase at  an annual  average rate of  2−6% out
to 2030 with major contributions from rising carbon-intensive
livestock  production,  growing  beef  and  dairy  consumption,
and  continuing  cropland  expansion  into  natural ecosys-
tems[23,24]. Longer-term trends appear to offer little relief. Out
to 2050, the medium range projection for human population
growth is 9.7 billion people, an increase of about 2 billion over
2020[25]. Over this period, some two billion people are expected
to enter the global middle class with projections that they will
use their increased wealth for more resource-intensive consum-
ption, including eating many more animal products[26]. These
two  trends  underlie  projections  for  a  25−70%  rise  in  global
food production to meet demand to 2050[27].

Transformative  change  in  food  systems  is  uniquely
challenging  given  the  links  between  food  as  a  source  of
physical  and  cultural  sustenance  and  its  commodification
through  heterogeneous  systems  of  private  and  public
economics, institutions, and governance. Fostering change in
food  systems  requires  more  than  technical  innovation;  it  is
about  how  culture  and  identity  shape  individual  attitudes
about  food.  And  food  systems  transformation  is  also  about
political  decisions  that  influence  policy,  institutions,  and
governance[28].

In  response  to  these  challenges,  current  food  systems
research  is  expanding  to  address  links  within  and  beyond
how crops are grown in fields to the full  range of agriculture
practices  within  tele-coupled  food  systems  in  the  21st

century[29].  However,  even  as  concomitant  understanding  of
the  ecological  and  social  sides  of  food  systems  is  growing,
coordinated  research  and  international  policy  remains
missing.

In this broad overview paper, we briefly outline and explore
critical  problems  and  promising  prospects  for  circular
agriculture’s  contributions  to  transitions  to  sustainable  food
systems  in  the  Anthropocene.  We  define  circular  agriculture
(CA)  and  provide  historical  context  on  its  development.  We
then consider  how CA may contribute  to  food system trans-
formations  in  four  key  areas:  multi-functional  landscapes;
sustainable  intensification  (focusing  on  nitrogen/crop-
livestock  management  and  digital  agriculture);  small holder
farmers;  and  dietary  change.  We  selected  multi-functional
landscapes,  sustainable  intensification,  and  dietary  change
following  recent  research  that  has  identified  specific  sectors
of  food  systems  that,  if  prioritized,  can  deliver  large  co-
benefits  for  climate  change  mitigation  and  adaptation,  bio-
diversity  protection,  and  degraded  lands  restoration[30,31,32].
We focus on smallholder farmers since their productivity and
livelihoods  are  a  major  target  of  SDG2.  For  each  of  these
areas, we offer suggestions for CA research that can stimulate
new advances toward sustainability. 

Circular Agriculture Past to Present
The idea of  minimizing harmful  inputs  and outputs  in  any

production system through creating closed loops that recycle
valuable end products back into a circular economy has been
discussed  for  decades[33].  Several  countries  have  pioneered
versions  of  a  circular  economy  as  state  policy  (Germany  in
1996,  Japan  in  2000),  yet  circularity  in  agriculture  is  a  much
older  idea  following  the  principles  of  ‘grow,  make,  use,
restore’[34].  Circular  agricultural  systems  involve  1)  system
thinking  to  design  closed  cycles  of  nitrogen,  phosphorus,
carbon,  energy  and  water  along  ecological  cycles  and  waste
treatment re-use along social value chains; 2) consideration of
multiple  organisms  including  microbes  (bacteria  and  fungi),
plants,  animals,  and  insects  as  they  form  food  webs  from
producers  to  decomposers;  3)  innovations  using  smart
design, digital technology, artificial intelligence, and big data;
4)  and  efficient  and  effective  design  and  decision  making
across  multiple  scales  throughout  the  entire  value  chain,
often  using  life  cycle  assessment  (LCA)  on  a  farm,  within  a
company  or  a  country,  or  at  the  global  scale[35,36].  CA  is  but
one of several sets of practices that are aimed at implementing
food  system  transitions;  others  include  agroecology[37] and
climate-smart regenerative agriculture[38].  There is considera-
ble overlap among these collections of practices, even as they
seek somewhat divergent goals.

Today,  CA  in  various  forms  is  being  implemented  around
the world from small farm fields to large countries. There is a
tremendous  diversity  of  projects,  for  example,  in  Europe[39],
Africa[40],  Asia[41],  North  America[42],  Australia[43],  and  South
America[44].  China  and  the  European  Union  (EU)  are  leading
CA  proponents.  China  has  had  a  national  strategy  for  a
circular  economy  since  2013,  making  much  progress  in
increasing resource use efficiencies, and the country has been
implementing  a  national  sustainable  agriculture  plan  since
2015[45].  In  2018,  the  EU  issued  a  farm-to-fork  agricultural
policy including a comprehensive set of CA practices, though
it has yet to be approved by member nations[46].

One of  the challenges  of  designing CA at  any scale  in  any
place  is  capturing  the  elements  of  complex  food  systems.
These  challenges  are  related  to  debates  about  whether  to
narrowly  frame  food  systems  as  only  about  technological,
supply-side  issues  (increase  crop  yields,  close  nutrient  loops,
re-couple  crop-livestock  links,  etc.)  to produce  more  food
efficiently,  or  whether  to  include  social  and  demand-side
issues  (improve  smallholder  livelihoods,  create  sustainable
supply  chains,  promote  dietary  shifts,  etc.)  to produce  more
food security[47].  CA has a history of being technically framed;
on  these  grounds,  it  has  been  critiqued  for  placing
agricultural  efficiency  above  social  outcomes[48,49].  But
including all elements of food systems in CA is not a win/lose
proposition;  using  a  social-ecological  framework  in  a  world
where  food  systems  are  often  inefficient and inequitable
requires that the social aspects of food systems be accounted
for. Certainly, the international discussion about food system
goals  is  no  longer  confined  to  maximizing  productivity,
recapturing wastes, and lowering environmental costs; it now
includes  optimizing  outcomes  across  the  full  range  of
environmental  and  social  concerns  in  complex  systems  of
production and consumption[50,51]. 
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Contributions of CA to Sustainable Food Systems
Transformation 

Building Multifunctional Landscapes
Given the impacts of agriculture on natural ecosystems, it is

clear  that  food  systems  transitions  must  include  eliminating
new  cropland  expansion  into  natural  ecosystems  while
increasing  on-farm  protection  of  biodiversity,  ecological
functions  and  ecosystem  services[11].  The  latter  can  be
accomplished  through  creating  multifunctional  landscapes
on  lands  where  crops  are  grown,  thereby  increasing
biodiversity  and  ecosystem  services  values[52].  A  host  of
practices  are  already  being  employed  on  farms  to  do  this
including:  diversifying  vegetation  on  field  edges;
incorporating agroforestry into fields; protecting semi-natural
patches  of  vegetation  in  and  around  farms;  creating  ravine
and  riparian  buffers;  managing  to  increase  pollinators;
enhancing  soil  biodiversity;  and  more[53,54,55].  Understanding
how  much  of  the  area  of  agricultural  lands  should  be
managed for biodiversity and ecosystem services is evolving.
Currently,  few  countries  have  any  minimum  area  require-
ments  for  conservation  of  natural  habitats  within  working
lands, though there is some research that shows protecting as
little  as  5%  of  within-field  natural  habitat  yields  benefits[56].
New  work  suggests  a  minimum  goal  of  20%,  though  the
authors  recognize  that  some  places  may  need  more  or  less
land area protected[57].

In  addition  to  these  practices,  innovative  CA  projects  are
moving  to  increase  connectivity  across  watersheds  and
regional  landscapes  to  support  plant  and  animal
dispersal[58,59].  Restoration  of  both  on-farm  and  surrounding
degraded  lands  is  another  practice  that  can  link  working
lands  with  protected  areas[60].  Connecting  farms  with  larger
landscapes  requires  a  commitment  from  CA  workers  to
gather  science-based  evidence  about  landscape  links  from
field locations where they work and then sharing it with other
actors at  multiple scales.  This  is  beginning to occur in China,
where  agricultural  lands  are  being  incorporated  into  spatial
planning  for  the  national  system  of  Ecological  Conservation
Red Line areas[61]. At the global scale, linking food system and
biodiversity  goals  will  be  especially  important  in  2021  since
the UN Convention on Biological  Diversity  is  convening,  and
the  draft  Global  Biodiversity  Framework  that  will  set  policy
out  to  2030  as  yet  contains  no  specific  strategy  for  agricu-
ltural lands[62].

Given  the  tremendous  diversity  of  food  systems  from
smallholder to large corporate farms, there is much room for
CA to make contributions to learning about best practices to
integrate agricultural lands into multifunctional landscapes. A
general  strategy of  testing mixes of  the practices mentioned
here depends on the establishment of multiple pilot projects,
monitoring  research  results  to  help  define  what  works  and
what does not work at scale, and identifying costs and trade-
offs  to  optimize  implementation.  Three  critical  actions  can
help  support  successful  implementation.  The  first  is  working
with  local  farmers  to  discover  and  implement  place-specific,
field-level practices that have co-benefits for crop production
and  biodiversity[63].  The  second  is  developing  regional
landscape-scale spatial planning that can explore connecting
food  systems  with  biodiversity,  ecosystem  services,  climate,

and other outcomes[64].  The third action lies with looking for
opportunities  to  convey  research  outcomes  to  local  and
regional/national  decision  makers.  These  links  can  serve  to
build  support  for  project  outcomes  with  institutions  and
decision  makers,  and  may  spark  initiatives  that  support  new
multifunctional landscape policies. 

Promoting Sustainable Intensification
Sustainable  intensification,  where  agricultural  outputs  are

increased  while  environmental  impacts  are  reduced,  is  an
essential  component  of  transforming  food  systems[47].  There
is much overlap here with CA. Sustainable intensification has
focused  on  reducing  external  inputs  (fertilizers,  pesticides,)
and decreasing environmental  impacts in service of  growing
more  food on less  land.  CA has  emphasized closing nutrient
loops  and  creative  recycling  of  wastes.  Both  approaches
begin  at  the  field  level  and  share  a  broad  mix  of  technical
practices;  we  focus  here  on  two:  nitrogen/crop-livestock
management, and digital agriculture.

Nitrogen cycles on most agricultural lands are open, highly
inefficient, and unsustainable due to the overuse of synthetic
fertilizers,  poor  animal  waste  management,  and  the  de-
coupling of animal/crop production loops[65]. Together, these
inefficient  practices  have  resulted  in  dramatic  increases  of
various  forms  of  nitrogen  pollution  in  air,  water,  and
soils[13,66,67].  Growing  global  livestock  production  resulting
from increasing demand for consumption of animal products,
especially  meat  and  dairy,  accounts  for  the  vast  majority  of
these  pollutants,  and  there  are  large  global  disparities  in  all
forms  of  nitrogen  pollution  between  regions,  countries,  and
subnational  areas[68].  For  example,  fertilizer  application  rates
in  China  are  four  times  greater  than  in  the  EU,  while
application rates in Africa are minimal[69].

Yet  the  economic  and social  value of  livestock  production
add  complexity  to  finding  solutions  for  better  nitrogen
management.  Globally,  34%  of  all  farm  market  value  comes
from  animal  products[70].  Some  one  billion  people,  mostly
local  smallholders  often  living  on  lands  less  suitable  for
growing  crops,  depend  on  stock  for  their  nutrition,
livelihoods, and many cultural values[71].

Ongoing  research  is  helping  to  identify  what  places  and
practices  must  be  prioritized  so  that  CA  and  sustainable
intensification  solutions  for  livestock  production  can  be
better  targeted and implemented.  The general  use  of  LCA is
widely  advocated[72,73].  Many  studies  also  recommend
particular focus on three areas: local fertilizer use efficiencies,
changes  in  animal  feed  production,  and  manure
management[66,74,75].

Numerous  changes  in  fertilizer  use  efficiency  are  being
pursued  within  CA.  These  include  reducing  urea-based
fertilizer  application  rates,  deep  placement  of  fertilizers,  and
changes in crop straw use[76].  Much innovative work is being
done with improving animal feeds including using a variety of
new  supplements  in  animal  foods  (food  wastes,  tannin-rich
plants,  fungi,  algae,  insect  proteins)[77,78,79].  For  improved
manure  management,  there  is  active  experimentation  using
anaerobic  digesters,  biogas  production,  membrane  filtration
systems,  worm  composting,  algal  cultivation,  and  fungal
digestion[77,80,81,82].

Efforts  to  reconnect  crop-livestock  loops  are  focused  on
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getting  animal  wastes  back  onto  fields  to  replace  synthetic
fertilizers[83,84].  In  addition,  researchers  are  pursuing  innova-
tions  using  algal  and  fungal-based  waste  treatments[77].
Zhang  and  colleagues[85] in  China  have  gone  farther  than
many  researchers  by  looking  at  county-level  nitrogen
management  practices  to  discover  and  showcase  where  the
most  efficient  management  is  being  done.  This  kind  of  fine-
scale  research  provides  a  model  that  other  countries  can
pursue to optimize livestock management.

Nitrogen  inefficiencies  are  not  limited  to  agricultural
practices;  they  occur  across  food  systems  from  fertilizer
production  and  processing  to  retail  and  trade[86].  Further,
global  trade  in  animal  feedstocks  (soy  and  corn)  and  meat
allows importing countries to avoid the embodied LCA costs
of nitrogen pollution. Embodied costs also extend to ground
water  depletion[87],  ecosystems  services[88],  and  carbon
emissions[89].  We  know  of  no  country  accounting  for
embodied  flows  in  their  agricultural  policy  or  national  food
systems planning; this is an area where CA research using LCA
and other  modelling at  the global  scale can make important
contributions.

At  all  scales,  for  nitrogen  management  to  meet  the
sustainability  standards  of  safe  planetary  boundaries,  major
transformation  of  conventional  practices  will  be  needed.
These  include  more  mainstream  use  of  cost/benefit  and
trade-off  analyses  across  national  agricultural  sectors  and
international  trade,  redesign  of  research  programs,  local
extension services,  agricultural  credit  and insurance systems,
and food safety regulations[90,91]. It is also clear that increasing
supply-side efficiencies without also addressing demand-side
dietary  change  (and  food  loss  and  waste)  will  not  solve
nitrogen  cycle  problems[92].  The  expectation  is  that  the
positive co-benefits from reduced water and air pollution and
greenhouse gas emissions along with increases in benefits to
public health and food security will drive increasing nitrogen
cycle efficiencies throughout food systems. 

Supporting Digital Agriculture
Innovative  use  of  digital  technologies  is  expanding  across

food  systems  at  all  scales,  providing  producers  with  more
targeted  information  and  tools  to  assist  with  growing  crops
efficiently  and  linking  them  into  supply  chains[93,94].  Digital
agriculture  refers  to  the  integrated  use  of  digital  and
geospatial  information  technologies  to  assess,  manage,  and
monitor  conditions  in  the  field  so  that  optimal  agricultural
outcomes  may  occur.  Mehrabi[95] outlines  three  key  areas:
data  generation  (for  example,  mobile  devices,  drones,  field
sensors,  satellites),  data  processing  and  predictive  analytics
(big  data,  machine  learning),  and  human–computer
interactions (ways to blend voice, text and images to improve
understanding  and  communication  of  results).  These
technologies  are  assisting  farmers  to  optimize  amounts,
timing,  and  placement  of  fertilizers,  nutrients,  and  water,
while also enabling better monitoring and communication of
environmental  conditions  in  fields  and  across  landscapes.
Digital  technologies can also help to create supply-side links
to  financial  services  for  farmers  and  foster  demand-side
environmental traceability along supply chains.

Digital  agriculture  is  evolving,  but  it  is  not  a  panacea  to
solve  food  system  problems.  While  digital  methodologies
have been hailed as  a  breakthrough to provide smallholders

with  useful  data  and  market  links  primarily  through  mobile
phones,  such  use  remains  limited.  Only  24−37%  of  global
smallholders  are  connected  to  the  Internet,  and  there  are
wide country and regional disparities in access and use[95].  In
less wealthy countries, there are technological barriers due to
poor  internet  infrastructure,  data  access  costs,  and  private
sector  control  of  software  and  security[96].  Social  barriers
include disparities in adoption readiness, concerns about data
ownership, and unequal gender access; these issues highlight
the  fact  that  adoption  of  digital  agriculture  has  political  as
well  as  technological  sides.  Even  where  digital  agriculture
methods  are  in  relative  wide  use,  research  has  yet  to
determine  their  many  tradeoffs[97],  and  economic  and
environmental  costs/benefits[98].  CA  researchers  can  make
contributions  here  by  using  LCA  studies  that  analyze  trade-
offs that extend beyond individual farms/farmers throughout
supply  chains  to  determine  the  comparative  costs  and
benefits of using smart farming tools.

Overall, the future is bright for the continued expansion of
multiple  sustainable  intensification  practices.  Farmers  work-
ing on 9% of global agricultural lands are already implemen-
ting  at  least  one  sustainable  intensification  measure[47].  CA
researchers  can  focus  on  how  to  speed  up  adoption  of  the
broad range of sustainable intensification practices, especially
in  regions  where  farmer  needs  are  great  and  progress  has
been slow. 

Working with Smallholders
Smallholder  farmers  are  important  actors  in  the  transition

toward sustainable food systems; they are the focus of SDG2
with  its  goal  of  doubling  smallholder  productivity  and
income by 2030. Of all farms in the world, about 83% are less
than  2  h  in  size[99].  These  farms  provide  50%  of  global  food
calories and over 70% of food calories to people living in Latin
America,  sub-Sahara  Africa,  and  South  and  East  Asia[100].  At
the  same  time,  smallholders  are  often  poor  and  subject  to
food insecurity.

Despite relatively limited research, we do know something
about  what  smallholder  farmers  need  to  be  better  served  in
sustainable food systems. These include enhancing extension
services  while  respecting  local  agricultural  knowledge,
building farmer cooperatives, offering education and training,
securing  market  access,  and  increasing  targeted  forms  of
private  sector  and  government  support[28].  With  a  focus  on
meeting  SDG2,  CA  researchers  and  practitioners  can  play
important  roles  by  working with  smallholders  to  experiment
with, understand, and implement these actions.

Extension  services  need  to  scale  up  provision  of:  forward-
looking information about  crop varieties  suitable  to  regional
changing climates[101]; methods for smallholders to re-couple
crop/livestock links, including managing crop biomass[69]; and
assistance with producing crops (legumes, nuts, etc.) that can
replace animal products as dietary shifts occur[32]. Respect for
farmers’ local knowledge must be part of enhanced extension
services  given  that  smallholders  have  not  often  been
consulted about their needs[102].

Farmer  cooperatives  and  other  forms  of  self-organized
groups have been shown to support collective action around
growing  new  crops,  and  gaining  access  to  markets[103].  Co-
ops  often  build  mutual  trust  among  farmers  which  is  often
necessary  to  support  innovative  behavior  during  times  of
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change in food systems. Creating more co-ops, however, does
not  automatically  lead  to  better  outcomes  for  smallholders;
group  efforts  often  show  a  positive  effect  on  farmer  income
and  a  mixed  influence  on  crop  yields  and  crop  quality[104].
Working with farmer co-ops can help CA researchers to better
evaluate costs and benefits of this form of social organization
and how it may contribute to greater on-farm efficiencies and
off-farm market links.

Two  large  studies  of  smallholder  needs  found  that
education  and  training  provide  important  ingredients  for
making  progress  in  food  system  transitions[101,28].  These
actions  can  be  integrated  into  extension  services  and
cooperatives  with  particular  attention  paid  to  women,  who
make  up  about  50%  of  the  rural  agriculture  labor  force[105].
Women  are  commonly  overlooked  by  local  officials  and
academic  researchers,  but  recent  work  is  beginning  to
change  this[106].  Chanana  and  colleagues[105] use  a  multi-
factor  model  that  maps  locations  where  female  farmers  are
most vulnerable to climate change and food insecurity so that
decisions about where to provide services can be prioritized.
This  model  can  be  adopted  by  CA  researchers  and  other
investigators  to  provide  details  that  are  specific  to  local
research sites.

CA  researchers  are  beginning  to  work  to  establish  better
links  between  smallholders  and  new  markets  for  their
products.  This  work  often  begins  on  a  farm  assisting  a
smallholder  to  connect  with  nearby  markets  (often  urban
consumers)  to  purchase  her  new,  sustainably-grown
product[107].  But  it  does  not  end  there.  Supply  chains  with
their multi-faceted environmental and social footprints often
extend beyond local and regional levels since one-third of all
food is globally traded and crosses two or more international
boundaries[70].  For  globally  important  products  like  soy  and
beef, the embedded impacts of production and consumption
have  serious  environmental  consequences;  for  example,  the
greenhouse  gas  emissions  footprint  of  beef  exported  to  the
EU  from  Brazil  comes  close  to  cancelling  out  all  EU  carbon
mitigation  goals[108].  Food  systems  policy  research  suggests
building  transparent  and  traceable  supply  chains  from
smallholder  farms  to  global  networks  using  digital  means  to
close  loops  in  tracking  environmental  and  social  costs  and
benefits[109,110].  This  work  faces  complex  challenges  across
multiple  sectors  of  tele-coupled  food  systems[29].  For  CA
researchers  working  with  smallholders,  a  critical  decision  is
deciding how far up supply chains and away from small farm
study sites one should go to account for these impacts[111,112].
Eco-certifications,  improved  product  labelling,  and  LCA  are
tools  to  help  do  this,  but  transformative  change  in  global
food systems will  eventually  require  reevaluation of  national
and international supply chains.

To  better  address  the  needs  of  smallholders  far  removed
from global trade, local and national governments have roles
to  play  in  three  main  areas—infrastructure,  incentives,  and
financial  support.  For  infrastructure,  governments  should
prioritize provision of irrigation for the 37% of smallholders in
water-stressed  regions  around  the  globe  who  likely  lack  any
means to irrigate their fields[113].  Digital network connections
for  smallholders  and  facilities  for  food  storage  and  transport
to reduce post-harvest food losses (and bolster farmer profits)
are two additional areas where more government attention is

needed.  Creating  positive  incentives  that  influence  small-
holder behavior  is  another area where governments can act.
These  range  from  relatively  straightforward  actions  like
providing  greater  access  to  credit  and  crop  insurance[107] to
revising  regulations  for  digital  access  and  data  privacy[114].
More  challenging  changes  are  the  need  to  address  long-
standing land tenure problems that confer high levels of risk
to farmers and reduce agricultural innovation[115]. 

Encouraging Dietary Change
Dietary  shifts  toward  more  nutritious,  plant-based  foods

will also be challenging as we learn how to construct a more
sustainable food system. In fact,  of all  strategies out to 2050,
plant-based  diets  (56%  reduction)  and  diets  following
improved  nutrition  guidelines  (29%  reduction)  yield  the
largest modelled decreases in greenhouse gas emissions from
global  food systems[18,116 ].  This  means that  animal  products,
especially  meats,  must  play  a  reduced  role  in  many  human
diets  going  forward.  This  is  a  demand-side  area  of  food
systems analysis that has been so far been little addressed by
CA researchers.

Dietary  shifts  away  from  animal  foods  at  the  speed  and
scale that appear to be required will be difficult to encourage.
Though  animal  products  are  the  single  largest  source  of
greenhouse  gas  emissions  from  food  systems,  global
production  and  consumption  of  these  products  are  rising[5].
And  there  are  pronounced  dietary  differences  between
countries that must be accounted for in crafting strategies to
encourage shifts  away from animal  foods.  For  example,  beef
consumption  in  the  US  has  declined  almost  36%  since  the
1970s,  but  overall  consumption  of  all  meats  remains  very
high[23].  In  China,  per  capita  meat  consumption  is  much  less
than in many countries, but it is steadily rising[117].

There  are  multiple  strategies  that  are  essential  to
promoting  global  dietary  transformative  change.  The
question  is,  if  dietary  change  is  a  priority,  then  what  do  we
know that would facilitate the rapid adoption of new ways of
eating?  Given  the  diversity  of  global  diets,  there  is  no  single
answer  to  this  question;  dietary  shifts  must  be  attuned  to
every  country  and  cultural  context.  However,  scientific
information  does  not  much  influence  peoples’  decision
making  when  it  comes  to  what  they  choose  to  eat;  taste,
tradition,  and  values  about  foods  are  more  important.  The
main drivers  of  dietary  change are social  norms among peer
groups  and  individuals’  beliefs  that  what  they  choose  to  eat
can contribute to group dietary shifts[118].  Lack of knowledge
about  the  environmental  impacts  of  food  choices  is
widespread.  Even  in  a  relatively  well-educated  country  such
as  the  US,  only  43%  of  people  know  about  the  climate
impacts  of  eating  meat[119].  This  suggests  that  government-
led programs that employ relatively strong dietary incentives
will  likely  be  needed[120].  Past  government  efforts  to  spur
national dietary shifts have occurred in several countries over
spans of 2−4 decades, however, most of these programs only
focused on supply-side growth in crop yield and income from
products  with  scant  attention  to  overall  food  systems
sustainability[121].

The  Lancet  Commissions’  work[3] has  established  a  global
model  to  encourage  transitions  toward  healthy  eating.  Yet,
less than half of all countries have established national dietary
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guidelines[122], and costs of dietary change for poor people in
less wealthy nations may be prohibitive without some form of
subsidy[123]. An important knowledge gap that CA researchers
could  address  here  is  evaluation  of  what  cost-effective,
protein-rich  crops  might  help  to  replace  animal  products  as
the  transition  toward  consuming  less  meat  and  dairy
proceeds.  Other  steps  would  be  for  countries  to  solidify
national  dietary  standards  followed  by  efforts  to  reach
international consensus on global guidelines and monitoring
to  track  progress.  These  actions  will  certainly  demand  some
form  of  international  cooperative  mechanism;  it  is  here  that
trade-offs  between  food  systems  and  climate,  biodiversity,
public  health,  and  sustainable  development  goals  may  lead
to co-benefits that compel action. 

CONCLUSION

At  the  beginning  of  this  paper,  we  observed  that  humans
have  little  historical  experience  with  intentionally  designing
food  systems  much  beyond  local  levels.  The  task  humanity
faces  today  is  considerably  greater;  from  tiny  subsistence
farms  in  sub-Sahara  Africa  to  the  more  than  US100  billion
dollars  of  international  trade  in  beef,  corn,  and  soy,  food
systems  require  a  'major  shift  in  mindsets'[2];  engagement
with  'a  massive  scientific  challenge'[124];  and  'radical  and
coordinated action'[125].

How  may  we  accomplish  these  things?  There  is  some
general  work  that  describes  how  social  transformations
unfold  over  10−30  years[126,127],  and  reviewing  the  history  of
progress  on  meeting  international  goals  for  climate
mitigation  and  biodiversity  protection  confirms  that  2−3
decades  (or  more)  are  likely  required.  Studies  at  national[75]

and global  scales[32] suggest  that  significant  progress  can be
made in food system transitions by 2030 and out to 2050, but
none  of  this  research  comes  close  to  projecting  net  zero
greenhouse  gas  emissions  from  food  systems.  Given  these
timelines and projections, it is imperative that CA and all food
system  researchers  be  more  cognizant  of  how  their  work
addresses  implementation  of  transformative  actions  as
described  in  this  paper.  To  encourage  such  efforts,  we  offer
four observations.

First,  food  system  researchers  can  benefit  from  what  has
already been discovered about  how societal  transformations
are shaped and stimulated[128,129].  Are there actions that may
accelerate  change  in  food  systems  in  a  preferred  direction?
Research  suggests  that  societal  transitions  may  be
encouraged  by:  supporting  transdisciplinary  knowledge  co-
production so that  the science,  social  issues,  and the politics
of  change are  equally  addressed[130,131];  identifying and then
working  with  actors,  institutions,  and  decision  makers  who
are willing to support innovative projects[132]; setting strategic
priorities  for  action  since  resources  (funding,  workers)  will
likely  be  insufficient  to  accomplish  every  task[133];  and
experimenting  with  multiple  pilot  projects  to  learn  what
works best before scaling up initiatives[134].  These actions, by
themselves,  may  not  yield  much  momentum  for  change;
however, used in combination, they may spark shifts that lead
to deeper  transformations.  Researchers  investigating climate
change and energy transitions are already using these lessons
to  design  projects  and  recommend  implementation

measures; CA researchers may also benefit from experimenting
with these methods.

Second, it is important to emphasize how the employment
of  innovative  tools  can  stimulate  food  systems  transitions.
These tools include: More frequent use of LCA to help define
cost/benefits  of  CA  projects;  incorporating  the  full  range  of
food  system  actors  and  institutions  into  CA  analyses  so  that
trade-offs throughout the system are routinely revealed; and
greater  use  of  multi-actor,  multi-sector  spatial  assessments
that  build  links  between  land,  water,  food,  and  social
systems[97].  If  sufficient  use  of  these  tools  can  be  sustained
across  multiple  sectors  of  a  countries’  food  system,  then  the
scientific  basis  for  national  planning  may  be  strengthened.
Science-based national planning may, in turn, contribute key
ingredients to the negotiation of a platform for international
food systems cooperation.

Third,  on  the  matter  of  governance,  general  lessons  from
transformative  change  research  along  with  specific  observa-
tions  from  food  systems  analysts  show  that  transitions  are
often  slowed  down  by  established  institutions  and  decision-
makers[135,136,137,138]. This makes sense since, by definition, CA
and  other  movements  toward  food  systems  sustainability
offer  alternatives  to  the  existing  norms,  policies,  and  power
relationships of conventional, linear agriculture. Conventional
agriculture actors often believe that the price of food systems
transformation is prohibitive due to redistribution of cost and
benefits  throughout  social-ecological  systems[4,139].  Despite
these  challenges,  there  are  methods  that  CA  scientists  and
practitioners  can  wield  to  more  directly  address  the  gover-
nance aspects of food systems. One way is for CA workers to
strategically  use  the  tools  and  techniques  outlined  in  this
paper  while  continuing  to  ask  fundamental  questions:  ‘what
does full cost accounting reveal about barriers and bridges to
the  true  price  of  affecting  change  in  food  systems  here?’;
‘how can we work collectively with local people, government,
and  other  actors  in  this  place  to  design  and  implement
sustainable  foods  solutions?’;  ‘who  are  the  specific  decision
makers  that  could  use  my  research  to  promote  change  and
how  do  I  best  communicate  with  them?’  These  practical
questions demand active solutions to sort  out  the inevitable
tradeoffs that are found throughout all food systems.

Finally,  it  is  important  to  remember  that  food  systems
evolve  through  peoples’  everyday  behavior  where  seeds  of
change  are  planted  that  accumulate  and  are  amplified  over
time.  These  incremental,  'small  wins'[140],  'small  stories  of
closing  loops'[141],  and  'bright  seeds'[142] range  from  a  farmer
adopting  a  climate-smart  crop,  to  a  county-level  decision
maker  funding  more  extension  services,  to  a  food  systems
researcher  incorporating  ecosystem  services,  food  systems,
and urban land-use into an improved, spatially-explicit model
that can better serve government planners. CA researchers do
not  have  to  foment  a  revolution;  however,  they  do  have  to
think  more  strategically  about  which  steps  have  a  better
chance  than  others  to  initiate  and  sustain  food  systems
transformations.

The  Anthropocene  will  continue  to  offer  many  challenges
and  opportunities  to  effect  transformative  change  in  food,
climate, and biodiversity protection so that human endeavors
stay  within  safe  planetary  boundaries.  In  2021,  there  will  be
additional  opportunities  to  support  secure  food  systems
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including the UN Food Systems Summit (https://www.un.org/
en/food-systems-summit);  the  Nutrition  for  Growth  Summit
(https://nutritionforgrowth.org/events/);  the  Convention  on
Biodiversity Conference of the Parties 15 (https://www.cbd.int/
convention/); and the United Nations Framework Convention
on Climate Change Conference of the Parties 26 (https://www.
ukcop26.org/).  The time for  planting transformative  seeds  of
change is now. 

MATERIALS AND METHODS

The field of sustainable agriculture is vast; there are 685,000
hits  to  the  subject  on  Google  Scholar  since  2016,  and  over
12,000 papers referenced in Scopus (as of  12/21/20).  For this
review  paper,  we  did  not  attempt  to  thoroughly  summarize
this  literature;  instead,  we  selectively  searched  for  papers
within this extensive field that focused on circular agriculture;
multifunctional  landscapes;  sustainable  intensification
(including  nitrogen  management  in  agriculture,  crop/
livestock  management,  and  digital  agriculture);  smallholder
farmers;  and  global  and  national-level  dietary  change.  We
emphasized  work  published  since  2015  (reflecting  the
timeline of implementation of the SDGs), and scoping reviews
and other syntheses of the above portions of the sustainable
agricultural literature that offered results extending beyond a
specific farm field setting. We filtered our search to highlight
transdisciplinary processes and cross-links to multiple areas of
food systems that  suggested innovative areas of  research.  In
all,  we  reviewed  abstracts  from  409  papers  which  led  to  the
reading of 210 papers of which 142 are cited in this review. 
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