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Abstract
Free-living nitrogen fixation (FNF) is a ubiquitous phenomenon that plays a modest role in the (N) economy of an ecosystem. However, sampling

difficulties, methodological constraints and environmental controls have presented challenges for predicting the actual rate of FNF. Therefore, a

deeper understanding of the accuracy to design models that consider dynamics, heterogeneity, influences, and other limitations is needed. This

review presents an overview of the biology and diversity of microorganisms related to FNF as well as various ecological controls that influence

these microorganisms. We also discussed contributions of FNF to the N input of various ecosystems. Overall, previous research has shown that

considerable spatiotemporal variability exists in microbial types at both biome and microbiome scales, resulting in significant variation in FNF.

Beyond this, rate of FNF is controlled by certain factors, such oxygen and metal ion availability, source of energy and soil nutrients, temperature,

and pH. Empirical evidence increasingly indicates a significant contribution of FNF to N inputs in natural, agricultural, and aquatic ecosystems. It is

inferred  from  this  review  that  for  the  expanded  exploitation  of  biological  nitrogen  fixation  (BNF),  we  must  pay  additional  attention  to  FNF

because  it  occupies  a  central  role  within  the  process.  Finally,  we  propose  a  framework  for  the  quantification  of  FNF  alongside  a  suite  of

recommendations that would deepen our understanding of FNF.

Citation:  Khan S, Nadir S, Iqbal, Xu J, Gui H, et al. 2021. Towards a comprehensive understanding of free-living nitrogen fixation. Circular Agricultural
Systems 1: 13 https://doi.org/10.48130/CAS-2021-0013

  
Introduction

Biological nitrogen fixation (BNF) contributes to 50% of the
total  annual  usable  nitrogen  (N)  of  the  biosphere[1−3].  The  N
molecule  itself  is  highly  inert;  however,  its  fixation  can
generate  compounds  that  contain  reactive  N  (Nr),  including
NH3, NO, NO2, N2O, HNO3, and other organic N compounds[4].
Though  N  is  abundantly  present  in  the  atmosphere,  it  is  the
most critical and limiting factor for ecosystem productivity[5,6],
which is supported by BNF.

A group of  bacteria  and archaea named diazotrophs  carry
out  BNF.  A  high  percentage  of  total  BNF  is  carried  out  via
symbiotic  N  fixation  in  which  the  host  plant  provides
photosynthetically fixed carbon to the symbiotic diazotrophs
for their growth, while the host plant obtains the biologically
fixed N[7]. Moreover, under specific conditions, non-symbiotic,
free-living  diazotrophs  such  as Burkholderia, Azotobacter,
Klebsiella, Azospirillum, Bacillus,  and Clostridium can  also  fix
substantial  amounts  of  N,  which  is  known  as  free-living
nitrogen  fixation  (FNF)[8,9].  In  some  cases,  diazotrophs  estab-
lish  weak  associations  with  lichens  and  cycads,  including
Ceratozamia Mexicana and some higher plants (e.g.,  conifers,
cereals, and sugarcane), or colonize plant tissues and perform
N  fixation,  which  is  considered  associative  N  fixation[10,11].
Thus,  FNF  specifically  is  a  form  of  BNF  in  which  no  obvious

structures  or  symbiosis  are  established  between  plants  and
microbes. So far, there is no exact delineation between these
forms  of  BNF[12].  In  light  of  aforesaid  definition,  free-living  N
fixers include soil-dwelling associative bacteria (such as Cyano-
bacteria,  Azotobacter, Klebsiella, and Pseudomonas);  hetero-
trophic  bacteria  (such  as Xanthomonas sp.  and Phyllobac-
terium sp.[13];  anaerobic  bacteria  that  inhabit  reduced  soil
layers[9,14];  endophytic  bacteria  (such  as Herbaspirillum sp.,
Azoarcus sp.,  and Gluconacetobacter  diazotrophicus)  that
resides  inside  plant  tissues;  lichens  (such  as Lobaria
pulmonaria and L.  quercizans[15,16];  and  species  of  archaeal
domain  (such  as Methanosarcina barker and Methanococcus
thermolithotrophicus[17]).

Recognizing  the  fact  that  free-living  N  fixers  are  growing,
they  require  a  large  amount  of  carbon  (C)  and  energy  com-
pounds to carry out their cellular processes[18,19]. Additionally,
in symbiotic N-fixing bacteria, N fixation mainly occurs in non-
growing cells, while in free-living N-fixers, fixation only occurs
in  growing  cells.  The  N  fixation  rate  of  free-living  fixers  is
consequently lower than symbiotic fixers that fix N in a static
mode, returning the source of C[7]. Moreover, the lifetime of a
free-living N fixing diazotroph is much shorter than a nodule
that  carries  out  N  fixation  activity  for  up  to  one  month[19].
Although  FNF  is  ubiquitous,  research  on  FNF  is  largely  lac-
king.  Compared  to  symbiotic  N  fixation,  FNF  can  potentially
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contribute to much higher levels of N in an ecosystem[12]. For
example,  studies  on  tropical  forest  systems  identified  that
FNF occurring in the rhizosphere,  litter,  and on the decaying
surfaces  of  logs,  leaves,  and  plants  contributed  6  kg  N  ha−1

yr−1 while 4.5 kg N ha−1 yr−1 via symbiotic N fixation[20].
Our review focuses on FNF, which is a global phenomenon

of  N  addition  to  ecosystems.  However,  N  inputs  by  FNF  is
difficult  to  estimate  due  to  profound  spatial  and  temporal
variability in FNF[7].  We compiled and integrated information
related to the biology and diversity of FNF organisms as well
as factors that influence FNF. In addition, we discussed: 1) the
contribution of FNF to the N budget of different ecosystems;
2)  quantification  of  FNF  using  different  methods;  and  3)
anthropogenic  activities  that  affect  FNF.  It  is  hoped  that  our
discussion  deepens  understanding  of  FNF  functions  across
various ecosystems. 

Biology and diversity of free-living N fixing
organisms

Around 90 genera of  diazotrophs possess  the ability  to  fix
atmospheric N[21].  Diazotrophs exhibit the following range of
physiologies:  they  are  strictly  aerobic  (such  as Cyanobacteria
and Azotobacter);  facultatively  anaerobic  (such  as Bacillus,
Carnobacterium, Paenibacillus,  Pseudomonas,  gamma-proteo-
bacteria, and Actinobacteria)  or  anaerobic  (such  as Clostri-
dium);  heterotrophic  (such  as Rhodobacter and Anabaena);
phototrophic  (such  as Rhodobacter  capsulatus);  and  chemo-
lithotrophic  (such  as Leptospirillum  ferrooxidans). Cyanobac-
teria (such  as Cyanothece sp.  and Synechococcus sp.)  is
prevalent  in  terrestrial  ecosystems  because  of  its  ability  to
colonize  matter  in  extreme  environments  like  deserts  and
tundra[10,22]. Cyanobacteria can  also  grow  on  tree  trunks  in
temperate  or  tropical  forests  as  well  as  on  moss  carpets
where they decompose litter and marine environments (e.g.,
Crocosphaera  watsonii)[23].  Moreover,  active  N  fixation  by
heterotrophic bacteria, such as Clostridium butyricum, Entero-
bacter  agglomerons, and Klebsiella  pneumoniae,  has  been
reported in different habitats that even include Antarctica[24].
Lichens  have  also  been  reported  to  fix  N  in  many
ecosystems[25].  Data  from  Hawaiian  forests  reveal  that  the
canopy  features  a  higher  rate  of  N  fixation  over  the  forest
mainly  because  of  lichen  abundance  in  these  locations[26,27].
Within  the  Archaea,  N  fixation  has  been  found  only  in  the
methanogens.  For  example, Methanococcus  thermolithotro-
phicus,  a  thermophilic  lithotrophic  methanogen,  can  fix  N  at
60  °C[17].  As  free-living N-fixers  have diverse  natures,  habitat,
and  distributions,  considerable  spatio-temporal  variability
exists  at  both  biome  and  microbiome  scales,  which  in  turn
results  in  significant  variation  in  the  overall  rate  of  N
fixation[27]. 

Nitrogen fixation enzymes

Two groups of nitrogenase in soil catalyze N fixation[28]. The
first  group  consists  of  molybdenum  (Mo)  nitrogenase;
vanadium (V)  nitrogenase;  and an iron (Fe)  nitrogenase[29,30],
which are oxygen sensitive and differ in kinetic parameters[29].
The second group contains a less-studied nitrogenase of  the
bacteria, Streptomyces  Thermoautotrophicus,  which  is

structurally  very  different  from  group  1  nitrogenases[31].  This
enzyme  is  not  sensitive  to  O2 and  other  known  nitrogenase
inhibitors[32].  X-ray  studies  have revealed that  nitrogenase of
the  first  group  share  a  similar  structure[13,33].  In  general,
nitrogenase  is  composed  of  two  major  components[34−36].
Component  one  is  termed  'MoFe  protein',  which  possesses
unique  subunits  and  cofactors.  In  MoFe  protein,  subunits α
and β are combined as α–β.  Between α–β,  a prosthetic group
termed the P-cluster is present (8Fe:7S P)[37,38]. The 7Fe: M: 9S:
C: homocitrate cofactor (also known as M center) contains the
centrally  located  Fe  atoms  that  constitute  the  substrate
binding site of  the nitrogenase enzyme[39,40].  In  addition,  the
small subunit, designated δ, is also present that stabilizes two
tetramers[39].  The  Fe  protein  is  the  second  component  of
nitrogenase,  with  two  subunits  that  are  bridged  by  a  4Fe:4S
cluster[40]. Each subunit of Fe protein has its own ATP binding
site that reduces MoFe protein[41].

Mo-dependent  nitrogenase  is  the  predominant  nitroge-
nase  present  in  almost  all  free-living  N  fixing  bacteria[28,42].
The  predominate  form  of  nitrogenases  in  archaea  is  Mo-
nitrogenase,  consisting of  the  same subunits  as  bacteria,  ex-
cluding nitrogenase reductase, which in archaea is a homote-
tramer, unlike the homodimer found in bacteria[17]. Only in A.
vinelandii are all  three types of nitrogenase of the first group
present[43,5]. However, it has also been demonstrated that Mo-
nitrogenase  shows  high  efficiency  at  high  temperatures,
while  alternative  nitrogenases  are  more  efficient  at  lower
temperatures[18,44]. 

Nitrogen fixation genes and their regulation

The  N  fixation  gene,  i.e., nif that  encode  for  the  nitroge-
nase, are an evolutionarily conserved set of genes in N fixing
microorganisms.  The nif genes  have  many  subunits  that
encode  for  proteins,  forming  the  structural  subunits  of  the
nitrogenase  enzyme,  the  cofactors,  and  other  regulatory
proteins involved in N fixation. The three nif genes, nifH, nifD,
and nifK, are  highly  conserved  structural  genes,  and  are
grouped  together  in  one  operon  in  almost  all  N  fixing
microorganisms, barring some rhizobia species. The gene nifH
encrypts for Fe-protein,  and the nifD and nifK encode for Fe-
Mo proteins (dinitrogenase), respectively[45]. The nifLA operon
consists of nifA and nifL genes that regulate the expression of
other nif genes.  Various  factors  tightly  regulate  the
transcription of nif genes, including levels of fixed N, carbon,
ATP/ADP ratio, and oxygen concentration[45,46]. The nifA gene
encodes  for  a  binding  protein.  The  RNA  polymerase  sigma
factor σ5 is activated under N limiting conditions and activates
the  expression  of  other nif genes[47].  Moreover, NtrB–NtrC
regulatory  systems  usually  regulates nifA transcription[48,45].
nifL gene-encoding  for  the  flavoprotein  is  activated  under  N
excess and high redox status, inhibiting the expression of nifA
and other nif genes. Another locus is called nifx, which is also
supposed to work in a similar way to nifL genes in inhibiting
nif expression[49]. Regulation of N fixation by nifL–nifA systems
varies  from  organism  to  organism[45].  In Kallesbela  pneumo-
niae,  the  N  sensor  protein glnB regulates NtrB–NtrC systems,
which  then  control  the  expression  of glnK,  nifL,  and nifA
proteins[46,50]. Under N-limiting conditions, glnK is essential to
stop nifL from hindering nifA. Conversely, in A. vinelandii, glnK
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is  not  required  for nifL to  inhibit nifA under  conditions  of  N
limitations[51−54].  For  diazotrophs  such  as Azospirillum  brasi-
lense and Rhodospirillum rubrum, post-translational regulation
of nitrogenase has been demonstrated[55−57].  In the presence
of  external  sources  of  N  such  as  ammonium,  a  regulatory
protein,  dinitrogenase  reductase  glycohydrolase  (DraG),  is
activated,  switching  off  nitrogenase  enzymes.  In  N-limiting
conditions,  dinitrogenase  reductase  ADP-ribosyltransferase
(DraT)  activates  nitrogenase  activity.  However,  our  know-
ledge about the detailed regulation mechanism of DraG-Drat
remains limited[57].

The  structural  organization  of nif genes  also  varies  exten-
sively  within  genomes  of  different  N  fixing  organisms.  In K.
pneumoniae, 20 nif genes are organized into 9 transcriptional
units that cluster together on the chromosome[58].  Similar nif
gene  organization  is  found  in Azotobacter, Asospirillum,  and
Clostridium[40].  In  cyanobacterium, Anabaena sp,  strain  PCC
7120, 14 nif genes have been recognized[59].  The nif genes in
Anabena sp.  are  not  organized  into  clusters  or  groups,  but
rather  have  been  dispersed  due  to  the  insertion  of
intervening  DNA  elements[59,60].  The  classification  of  the
methanogen nif gene  discloses  some  transformations  when
compared to bacteria[17]. In methanogens, novel homologues
of the bacterial  N sensor regulator glnB are located between
nifH and nifD genes.  Moreover,  six nif genes  (nifH, nifD, nifK,
nifE, nifN, and nifX) and the glnB in a single operon are unique
to methanogens[17]. 

Estimates of N fixation: An assumption or bias?

Various studies have reported that symbiotic N fixation is a
dominant  source  of  N  to  the  ecosystem[21,61] which  can
supply 150 kg N ha−1 yr−1 to an ecosystem. However, N supply
by FNF may be as high as ~76 Tg N yr−1, exceeding the overall
supply by lightning (5 Tg N yr−1) and industry-fixed N (120 Tg
N  yr−1)[12].  It  has  been  shown  that  FNF  contributes  to  a
significant  amount  of  N  in  ecosystems  in  the  absence  of
symbionts[22]. For example, biological soil crusts with a variety
of microbial communities may fix significant quantities of N in
dryland  ecosystems  with  scarce  symbiotic  N  fixation[62−65].
FNF is the major source of N in temperate and boreal forests
where  abundant  cyanobacteria  are  present  in  ground  moss
covering[66].  FNF provides major support to plant production
in wetland ecosystems in Brazil  where symbiotic N fixation is
rare[8,67,68].  Additionally,  FNF  is  the  dominant  source  of  N
availability  in  temperate  forests,  temperate  grasslands,  and
shrub lands,  and has  also  been found to  occur  in  deep soils,
canopy soils, and canopy leaves[9,12,69−71]. FNF may be high at
sites  where  N  demand  is  high  and  vice  versa.  As  FNF  occurs
under diverse and variable environmental conditions across a
variety  of  substrates,  predicting  actual  rates  of  FNF  can  be
challenging.  Studies  attempting  to  estimate  the  rates  of  N
fixation  by  symbiotic  and  free-living  pathways  are  not  from
simultaneous  assessments  and  are  typically  not  from  the
same individual sites[12]. In fact, methodological constraints as
well as significant spatial and temporal variations found in the
process  preclude  us  from  developing  conclusive  estimates,
potentially  leading  to  an  underestimation  of  global  rates  of
FNF. 

Ecological controls over free-living N fixing
organisms
 

Oxygen (O2) sensitivity
A major  factor  that  limits  FNF is  the O2 liability  of  nitroge-

nase enzymes[29,30,72]. As a mechanism to protect nitrogenase
from  O2,  most  obligate  and  facultative  aerobes  tend  to
increase  their  cellular  respiration  rate,  which  tends  to  lower
O2 levels. Further, N-fixers have developed other mechanisms
to  avoid  O2 toxicity  by  carrying  out  fixation  in  separate
cellular compartments that spatially separate N fixation from
photosynthesis[73,74] or  a  conformational  change  in  nitroge-
nase,  though  this  also  affects  fixation[75].  The  O2 liability  of
nitrogenase confines N fixation to anaerobic or microaerobic
environments,  with  the  exception  of A.  vinelandii,  which  can
fix  N2 under  entirely  aerated  conditions[76].  In  anaerobic
environments,  rates  of  N  fixation  remain  relatively  high
because  there  is  no  need  to  protect  nitrogenase  against  O2,
and  the  energetic  cost  of  fixation  is  relatively  low.  However,
the  capacity  to  fix  N  by  anaerobic  and  microaerophilic
bacteria  is  constrained  by  the  inefficiency  of  anaerobic
metabolism.  Indeed,  O2 concentrations  in  environments  are
constant  and  thus  hard  to  quantify[46,72,75].  An  optimal  O2

requirement cannot be defined for a mixed microbial commu-
nity, where each diazotroph has a different O2 requirement. 

Metal ions
Molybdenum (Mo) is central for the activity of nitrogenase

enzyme;  however,  in  some  species  it  is  replaced  by  a  vana-
dium (V) or iron (Fe)[77−80]. In terrestrial ecosystems, where Mo
is  often  limited  in  soil,  a  significant  fraction  of  FNF  is  carried
out  by  either  vanadium  nitrogenases  or  iron  nitroge-
nases[15,81−83]. Bacteria also require other metals like K, Ca, and
Mg  to  fix  N.  Deficiency  of  these  metals  affects  the  N-fixing
efficiency  of  some  FNF  bacteria,  as  these  act  as  cofactors  in
reactions[84]. 

Energy requirement
FNF require a continuous input of reducing source and ATP

supply[85,86].  Generally, 16 molecules of ATP are needed to fix
one molecule of N2

[87].  The energy requirement of FNF varies
with the organism, energy source, and environmental factors.
For  instance,  photosynthetic  organisms  can  attain  the
required energy by the natural process of photosynthesis. For
heterotrophic  microorganisms,  required  energy  is  solely
obtained  from  the  catabolic  activities  of  the  organic
substrate. A lower C/N ratio in the substrate and presence of
O2 is associated with decreasing capacity of FNF[87]. 

Nutrient availability
Nutrient limitations are related to enzymatic requirements

and  are  therefore  considered  an  overriding  control  over  N
fixation[88].  Low  phosphorous  (P)  availability  constrains  the
rate  of  FNF  by  affecting  ATP  and  regulating  nitrogenase
enzyme[89−91].  One  previous  study  suggested  that  FNF  is
~27%  higher  in  soils  receiving  P  inputs  over  an  unamended
control[92]. Similar positive associations between P inputs and
FNF  have  also  been  reported  in  tropical  forest  systems[12].
Wurzburger et al.[93] found that P availability can influence soil
Mo availability and thus limit FNF in P-depleted soils. Carbon
(C) are also known to limit N fixation[90,94−96,97].  In Clostridium
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pasteurianum,  FNF  is  inhibited  by  deficiency  of  C.  Moreover,
FNF  is  also  affected  by  the  C  quality  of  the  substrate.  For
example,  acetate  appears  to  impede  nitrogenase  activity  of
Azotobacter paspali[94−96,97].

The  availability  of  inorganic  N  decreases  the  rate  of  FNF.
Moreover,  lower  N/P  ratio  is  associated  with  higher  rates  of
FNF  by  soil-dwelling  bacteria[98−101].  In  contrast  to  the
stimulatory effect observed with P fertilization, N fertilization
has  an  inhibitory  effect  on  N  fixation[102].  The  rate  of  FNF  is
higher  under  N-limiting  conditions[72].  Under  severe  N-
limiting  conditions,  microorganisms  meet  their  N  demands
through  fixing  atmospheric  N  via  obtaining  exogenous  N  or
by  the  re-allocation  of  endogenous  N[103].  Exogeneous
sources of N in the form ammonium, glutamine, and histidine
are known to decrease the FNF rate in soils[104].  Research has
shown  that  ammonium  and  glutamine  act  as  inhibitors  of
nitrogenase  enzyme  synthesis  through  regulation  of nifA
gene  expression.  Nitrate  can  also  decrease  FNF  in A.
brasilense, while in C. watsonii no inhibition was observed[105]. 

Edaphic factors
Temperature  has  been  shown  to  inhibit  nitrogenase  acti-

vity  and  thus  restrain  FNF,  with  maximum  rates  occurring  at
~26 °C, depending on species and ecosystem[106].  Insufficient
soil  moisture  might  limit  the  capacity  of  diazotrophs  for  N
fixation due to  altering O2 availability.  Soil  texture  can affect
O2 concentrations  and  the  rate  of  substrate  diffusion  in
soils[107].  Soils  with  high  clay  content  are  estimated  to  have
high  N  fixation  rates  due  to  low  O2 pressure  on  the
diazotrophs[107].  Moreover,  soil  pH  has  an  influence  on  the
abundance and diversity of diazotrophs[108,109]. Although soils
contaminated  with  heavy  metals  have  depressive  effects  on
rhizosphere  microbial  communities[110],  their  effects  on  free-
living  N  fixers  and  the  rate  of  FNF  are  poorly  understood.
Land  use  adoptions  also  alter  the  diversity  of  free-living
bacteria[111,112].  The  abundance  and  diversity  of  free-living  N
fixers have drastically changed alongside the deforestation of
the  Amazon  rainforest[113,114].  Additionally,  plants  can  alter
FNF  rates  via  various  indirect  mechanisms[115−117].  For
example,  Cotta et al.[118] mentioned that planting genetically
modified  maize  significantly  changes  the  abundance  of  N-
fixing bacterial and archaeal communities. 

Ecosystem contribution by FNF
 

FNF in terrestrial ecosystems
FNF is  a ubiquitous phenomenon of terrestrial  ecosystems

occurring  on  plant  surfaces,  litter,  decaying  logs,  and  in
soils[12]. Cyanobacteria are the dominant N-fixers in terrestrial
ecosystem  because  of  their  ability  to  colonize  extreme
environments ranging from deserts to tundra[23]. The N inputs
by FNF to the total N budget of an ecosystem can vary due to
ecosystem  and  community-level  patterns  of  bacteria.  Accor-
ding to Reed et al.[12], FNF contributes to 1−20 kg N ha−1 yr−1

at  the biome scale,  and symbiotic  N fixation reaches  as  high
150  kg  N  ha−1 yr−1.  The  rate  of  N  fixation  by  heterotrophic
bacteria  alone  ranges  from  1  to  5  kg  ha−1 yr−1 for  decom-
posing  litter  in  different  ecosystems,  while  the  rate  of
Cyanobacteria ranges  between  1  and  10  kg  ha−1 yr−1[94,119].
The estimated range of N fixed by FNF is > 10 kg N ha−1 yr−1

for  tropical  rain  forests[120,121],  4  kg  N  ha−1 yr−1 for  desert
ecosystems,  and  >  2  kg  N  ha−1 yr−1 for  tundra  and  boreal
forests[122,66].  Research  has  revealed  that  FNF  bacteria  add  2
kg N ha−1 yr−1 in the soils of semiarid grasslands in California.
Although  these  rates  of  FNF  are  far  below  symbiotic  N
fixation, FNF could nonetheless supply a meaningful amount
of  N  to  the  total  N  budget  of  a  particular  ecosystem  in  the
long term. 

FNF in agroecosystems
Contributions  to  total  N  needed  in  agricultural  systems

might not be primarily fulfilled by FNF. However, it can fulfill a
substantial amount of the total N requirement of crops[62,123].
Studies have shown that N fixed by free-living Cyanobacteria
in rice paddies is ~12−33 kg N ha−1 in a cropping season[124],
~25−150  kg  N  ha−1 yr−1 in  sugarcane[8,68],  20  kg  ha−1 yr−1 in
wheat, < 10 kg N ha−1 yr−1 in extensive tropical savannas used
for  grazing[119,125],  and  <  5  kg  N  ha−1 yr−1 in  croplands  other
than leguminous crops[126].  The agronomic effects  of  FNF on
crops  have  provided  useful  model-systems  for  rhizosphere
studies,  plant-microbe  interactions,  and  environmentally
sound  agricultural  cultivation.  Sustainable  agriculture
requires  smarter  utilization  of  FNF,  which  can  offer  a  sound
means of reducing external N input; therefore, future research
into agroecological sustainability should focus on FNF. 

FNF in aquatic ecosystems
N  fixation  in  aquatic  ecosystems  also  cannot  be  over-

looked[127].  Microorganisms  with  the  capability  to  fix  N  have
been detected across various aquatic environments[100,128,129].
In  these  environments,  cyanobacteria  are  the  dominant
diazotrophs[130].  Previous  studies  reported  N  fixation  and
diazotrophs in lakes, but these studies neglected to highlight
the  contribution  of  FNF.  For  example,  MacGregor  et  al.[131]

detected  N  fixation  below  the  photic  zone  in  oligotrophic
Lake  Michigan,  but  actual  rates  remain  unknown.  A  study
conducted in an oligotrophic, hypersaline, meromictic lake in
California  showed  that  anaerobic  bacteria  possessing
significant  potential  for  N  fixation  were  present  across  all
depths[132]. In the deep water of Lake Michigan, N fixation was
also  found  to  be  an  important  source  of  N[131].  A  study
conducted in Lake George in New York State disclosed that a
diverse  group  of  diazotrophs,  including  unicellular  and
filamentous cyanobateria, alpha- and gamma-proteobacteria,
and  an  undefined  group  of  bacteria  were  found  in  the  lake.
Again, the actual rate of N fixation was not measured[133].

On the other hand, in oceanic areas, a significant portion of
N  fixation  is  interceded  by  cyanobacteria  and  anaerobic
bacteria[134,135]. Montoya et al.[136] showed that in the tropical
North,  N  fixation  supplies  a  substantial  amount  of  N.  Similar
phenomena  of  N  fixation  exist  in  the  Mediterranean  Sea[137];
however,  no  past  studies  targeted  FNF  contributions  in
oceanic environment. 

FNF measuring methods and their limitations
 

Acetylene reduction method
Acetylene reduction has been used to quantify FNF, which

follows  the  principle  of  no  specificity  of  nitrogenase.  The
reduction  of  acetylene  is  carried  out  by  nitrogenase,  which
produces  ethylene.  Then,  ethylene  production  is  quantified
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by  gas  chromatography  coupled  with  a  flame  ionization
detector.  Finally,  the  acetylene  reduction  rate  is  converted
into  a  rate  of  reduction  of  N2.  About  one  mole  of  N2 is
reduced  by  three  moles  of  acetylene.  During  N  fixation,
hydrogen evolution, which involves electron transfer, occurs.
The general  conversion factor is  4:1[3,138] and can vary across
natural  environments[139,140].  Acetylene  reduction  assay  has
several limitations: 1) during acetylene reduction assay, micro-
organisms may become N-deprived and can perhaps reduce
more  acetylene[138];  2)  acetylene  is  not  suitable  for  some
microbes  like  methanotrophic  bacteria  because  they  cannot
tolerate  acetylene  due  to  interference  with  methanogenesis
that can cause starvation or death of the microbe[141];  and 3)
three  different  types  of  nitrogenases  vary  in  their  affinity  for
the  substrate  acetylene,  consequently  producing  different
acetylene  reduction  rates  that  could  lead  to  the  misinter-
pretation of FNF rates in a natural system. 

15N-tracer method
The 15N-tracer  method  has  become  a  widely  adopted

method  in  modern  research[6].  This  method  utilizes  the 15N
stable-isotope  that  occurs  naturally  in  small  amounts.  The
FNF  organism  is  given 15N2,  and  the  incorporated  isotope  in
the particulate organic N is quantified via stable-isotope mass
spectrometer[142]. This method is more reliable relative to the
acetylene  reduction  method,  as  this  directly  measures  N
fixation[142]. However, the 15N-tracer method purely quantifies
net N fixation. Thus, biased results may occur where N fixation
is vigorous, and there is only partial release of the fixed N by
microorganisms[143]. 

Stable isotope abundance method
The  natural  abundance  of  stable  isotopes  (14N  and 15N)  is

another  method  that  can  be  used  to  quantify  the  FNF  of  N.
14N is  a  lighter  isotope that  is  preferred over 15N in chemical
reactions, as the bonds of the 14N are easily broken, leading to
substrates featuring greater enrichment of 15N[144,145].  For N2,
the δ15N value is normally 0%. The δ15N value of an organism
approaching  0%  indicates  a  fixation  of  N.  Many  aquatic
environments  like  lakes  and  oceans  facilitate  this  pheno-
menon[146,147].  The  stable  isotope  abundance  method  is  not
usually  suggested  because  it  misses  volumetric  N  fixation
rate,  and  in  many  cases,  the  N  sources  may  not  be  precisely
known. 

Gene markers
The nif genes  have  been  widely  used  as  a  marker  for

studying  the  identification,  quantification,  diversity,  and
phylogenies of bacteria in various environments[148−152]. PCR-
based  amplification  and  sequencing  of nifH DNA  have  been
used  for  detecting  non-cultural,  soil-borne  microorga-
nisms[153].  Many  correlation  studies  revealed  the  effects  of
environmental  factors,  plant  genotypes,  and  nutritional
availability  on  the  diversity  and  abundance  of  the nifH
gene[148,154].  Although the nifH gene is highly conserved, it  is
not  necessarily  a  true  indicator  of  actual  N  fixation  because
these  genes  are  prone  to  mutate  and  may  ultimately  be
excluded  from  the  genome[155,156].  Finally,  three  types  of
nitrogenases  are  produced  by  separate  genes,  i.e., nifH
encodes  for  Mo-nitrogenase, anfH for  Fe-nitrogenase  and
vnfH for V-nitrogenase; therefore, measurements based solely
on nifH abundance may lead to biased interpretations. 

Consequences of anthropogenic activities on N
fixation

The  productivity  and  dynamics  of  any  ecosystem  are
limited  by  the  supply  of  biologically  available  N[157,158].  It  is
well  known  that  anthropogenic  activities  are  constantly
altering  the  global  N  cycle[159].  Over-use  of  fertilizer  in
agriculture is a factor that has approximately doubled the rate
of N input into terrestrial ecosystems[160].  This has resulted in
the acidification of soils as well as the unbalancing and loss of
soil  nutrients  that  are  essential  for  the  maintenance  of  soil
fertility[161].  The  estimated  total  production  of  N  from
synthetic  fertilizer  is  120  Tg  N  yr−1,  which  represents  the
largest  contribution  of  Nr  to  the  atmosphere.  Furthermore,
the  wide  cultivation  of  leguminous  crops  contributes  an
additional 60 Tg N yr−1. N in oxidized forms (NO and NO2) as a
byproduct  from  automobile  combustion  and  industrial
emissions adds an additional 40 Tg N yr−1 to the atmosphere.
The  estimated  anthropogenic  production  of  Nr  is  therefore
180 (± 20) Tg N yr−1[4,160,162].  The emission of Nr by natural as
well as anthropogenic activities is expected to increase in the
future (Fig. 1). It is also reasonable to expect that with global
population  growth  the  demand  for  food  and  feed  will
increase  the  production  of  reduced  N  in  the  form  of  N
fertilizers  that  would  require  greater  fossil  fuels  combustion.
The  future  emission  of  NOx  is  highly  uncertain,  and  it  is
expected to increase alongside industrial developments until
abated  by  pollution  controls.  According  to  Fowler  et  al.[160]

the  N  input  to  ecosystems  via  natural  and  anthropogenic
fixation  will  increase  in  the  future  (Fig.  2).  Increasing  N
availability  generally  reduces  the  biological  diversity  of
ecosystems[163],  which  in  turn  affects  the  rates  of  various
biological  processes.  The  increasing  level  of  N  in  soils  is
known to inhibit the growth of symbiotic as well as free-living
organisms[164]. Nitrogen addition has obvious effects on the C
pool  of  the  ecosystem[158].  Excessive  nitrogen  deposition
favors  the  uptake  and  storage  of  carbon.  This  high  C
sequestration  will  demand  high  N  input,  which  will  likely  be
insufficient  in  the  future  if  N  addition  as  N2 fixation  is
controlled  by  resources  that  do  not  contain  N.[22,165].
Therefore,  there  is  a  need  to  increase  BNF  to  meet  the  N
supply  required  to  balance  the  increased  C.  The  expanded
utilization of BNF will reduce the dependence on synthetic N,
which in turn will  reduce the negative effects on biogeoche-
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mical  cycles.  FNF  may  compensate  N  losses  through  denitri-
fication, increasing soil phosphate levels by altering phospha-
tase  activity,  and  increasing  the  net  primary  productivity  of
terrestrial ecosystems[12,91]. 

Conclusions and future research directions

It  is  now  established  that  anthropogenic  activities  have
increased the total global N deposition. This has destabilized
biogeochemical  cycles,  including  the  N  cycle.  However,  to
accurately  address  the  effects  of  anthropogenic  activities  on
the  N  cycle,  we  need  a  detailed  understanding  of  the  FNF
process. Overall, available research has concluded that FNF is
a  ubiquitous  phenomenon  across  ecosystems  that  contri-
butes  significantly  to  the  N  inputs  of  a  range  of  ecosystems.
Based on knowledge gaps, we suggest that future research in
the  following  mentioned  areas  will  increase  our  understan-
ding of FNF:

The crucial need is to resolve uncertainties in observing N2

fixation  rate  per  unit  area  along  with  spatial  distribution  of
the  N  fixing  bacterial  species.  Previously,  authors  have
reported  global  N  fixation  across  various  ecosystems;
however,  most  of  these  studies  were  unable  to  investigate
several ecosystems[12,119,162].  Recently, research has produced
more accurate findings regarding cultivated and uncultivated
lands,  using  data  from  different  sources[126,162].  Additionally,

none of the studies take into account the constraints that FNF
bacteria  encounter  in  their  life  cycle.  In  fact,  methodological
constraints, spatiotemporal variation of the process, and com-
plex  interactions  between  plants,  microbes,  and  environ-
ments  do  not  allow  us  to  develop  conclusive  estimates  for
overall  fixation  rates  in  nature  and/or  agroecosystems.  We
suggest that site- and situation-specific research is necessary
to  obtain  real  estimates  on  a  granular  scale.  This  can  be
achieved  by  wisely  designed  models  that  consider  the
dynamics,  heterogeneity,  influences,  and  existing  constrains
to N fixation by free-living N-fixing bacteria. Thus, we propose
a  framework  for  gaining  a  better  understanding  of  FNF  (Fig.
3).  Another  essential  issue  in  need  of  clarification  is  the
ecology  of  FNF  bacteria.  We  urgently  need  to  deepen  our
understanding of  the numerous factors,  including biotic  and
abiotic,  that  affect  the  diversity  and  abundance  of  FNF
bacteria in the rhizosphere, which in turn influence the rate of
N fixation.
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