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Abstract
Grafting has been commonly practiced for many centuries in the cultivation of horticultural crops. The use of dwarfing rootstocks has enabled a

high-density  plantation  to  produce  maximum  yield.  Rootstock  regulates  scion  phenotype,  including  precocity,  fruit  size,  yield,  quality

characteristics, and tolerance to various environmental stresses. This review summarizes the existing information on the influence of rootstocks

on scion growth and dwarfing mechanisms induced by multiple factors, including hormone signaling, photosynthesis, mineral transport, water

relations,  anatomical  characteristics,  and genetic  markers.  It  has  been shown that  the complex interactions  between scion and rootstock can

regulate plant development and its structure. This information will provide interesting insights for future research related to rootstock-mediated

dwarfing mechanisms and accelerate the breeding progress of dwarfing rootstocks.
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Introduction

Grafting  is  an  ancient  plant  propagation  technique  that
combines  the  aerial  portion  (scion)  with  another  segment
(rootstock)  to  form  a  new  plant[1,2].  Modern  fruit  cultivation
systems  are  mainly  based  on  scion  varieties,  grafted  with
rootstock to control plant-specific characteristics, such as fruit
size,  early  fruiting,  and  to  reduce  disease  susceptibility[3,4].
Rootstocks  provide  grafted  plants  with  more  favorable
tolerance  against  multiple  environmental  stresses[5].  The
selection of a suitable rootstock is one of the major decisions
in  establishing  a  tree  garden  and  achieving  excellent  tree
performance in different ecological regions.

Rootstocks  have  been  used  in  fruit  plants  to  improve
nutrient  absorption  and  transportation  by  increasing  fruit
production,  taste  and  quality,  and  tolerance  against  several
environmental  stresses[6,7].  Dwarfing  rootstock  is  an  impor-
tant  germplasm  resource  for  high-density  cultivations  to
ensure  maximum  yield  and  mechanical  harvesting[8].  In
recent  years,  dwarfing  rootstocks  have  become  popular  due
to  reduced  vegetative  growth  of  scion  varieties,  increased
production,  and reduced labour  costs[9].  It  is  speculated that
scion  and  rootstock  are  the  essential  components  in  fruit
production  that  interact  with  each  other  to  release  mineral
nutrients,  hormones  and  carbohydrates[10].  The  hypothesis
behind  rootstock-induced  size  control  may  be  triggered  by
several  factors  such  as  water,  nutrients,  and  particularly
hormones,  which  pass  through  the  graft  union  to  influence

scion growth[11].
Several  studies  have  reported  the  diversity  and

domestication  of  rootstocks  and  their  influence  on  plant
vigour,  hormonal  communication  between  scion  and
rootstock,  and  various  stresses[1,12−16].  However,  due  to  the
complex interaction of rootstock-induced scion vigour, these
studies  have  not  fully  elucidated  the  possible  dwarfing
mechanism. This review summarizes the existing information
of  rootstock  influence  on  scion  growth,  nutrient  uptake,
hormonal communication, carbohydrate distribution, and the
molecular mechanism. 

Rootstock controls scion vigour

Rootstocks  have  a  substantial  effect  on  the  physiological
features  of  grafted  plants  and  other  aspects  of  growth  and
development, among which the reduction of scion growth is
one  of  the  most  interesting  phenomena  (Fig.  1).  Previous
studies  have  demonstrated  that  dwarfing  rootstock  and
interstock  contribute  to  restricting  plant  height,  crown  size,
and  tree  volume.  However,  the  plants  grafted  on  vigourous
rootstocks  have  more  nutritional  properties  but  lower
yield[17−20].  Gjamovski  and  Kiprijanovski[21] documented  that
'Granny  Smith'  apple  trees,  grafted  with  taller  rootstock
(Supporter  4),  have  higher  vegetative  growth  than  size-
controlling rootstocks (Panjam 1, M.9 T337 and Mark 9). Zhou
et  al.[22] stated  that  'Red  Fuji'  apple  scion  grafted  on  size-
controlling  rootstock  M.9  had  the  lowest  vegetative  growth,
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canopy  width,  and  trunk  cross-sectional  area  (TCSAs),
compared with vigorous rootstocks.

Sitarek  and  Bartosiewicz[23] studied  that  trees  grafted  on
M46 and P. divaricata had substantially higher values of trunk
cross-sectional  area.  In  comparison,  those  grafted  on
Wangenheim  Prune  showed  lower  values  and  dwarfing
characteristics.  Several  studies  have shown that  apple scions
grafted onto dwarfing rootstocks have shorter shoot lengths,
lower  trunk  cross-sectional  area  (TCSA),  and  weak  growth
characteristics[21,24,25]. Tworkoski and Fazio[23] also studied the
effect of various apple scion cultivars grafted onto rootstocks
of  Geneva  and  Malling  series.  They  observed  that  plants
grafted  with  G.41  and  G.935  rootstocks  had  the  maximum
shoot  growth  and  stem  diameter  compared  with  other
rootstocks.

Moreover,  the  application  of  interstocks  with  greater
dwarfing effects had lower net photosynthesis rate and root-
shoot  ratio  but  improved  yield  efficiency  and  fruit  quality  of
Red  Fuji  apple  trees[26].  In  another  study,  Hayat  et  al.[27]

reported that apple scion grown onto dwarfing M.9 rootstock
had  the  smallest  plant  height  and  reduced  scion  diameter,
and  the  lowest  hydraulic  conductance  (Kleaf).  In  contrast,
plants  grown onto more vigorous rootstocks M.26,  Chistock-
1,  and  Baleng  rootstocks  had  longer  shoot  length,  greater
scion diameter, and hydraulic conductance. 

Water restrictions and anatomical characteristics

Root hydraulic conductivity can influence shoot growth by
modifying water supply to the aerial part; however, its role in
rootstock-induced  vigour  is  still  controversial[28].  The
physiological  mechanisms  of  the  size  reduction  of  rootstock
or  interstock  are  triggered  by  restricting  water  flow  to  the
scion[29].  In another study, Basile et al.[30] reported that water
status  might  significantly  affect  the  rootstock-induced
dwarfing effects in peach trees. They studied the influence of
different  size-controlling  rootstocks  on  the  early  maturing

cultivar  'Flavorcrest'  and  found  significant  variations  in  stem
water potential  (ΨSTEM)  and stem extension growth.  Solari  et
al.[31] and  Tombesi  et  al.[32] explained  the  relationship
between  dwarfing  rootstocks  and  hydraulic  conductance.
They found that dwarfing rootstocks limit the water supply to
the aerial portion.

Lowered  hydraulic  conductivity  of  size-controlling  root-
stocks is probably due to the greater hydraulic resistance and
limited  water  absorption  capacity  of  size-controlling  root-
stocks. In pear, Chen et al.[33] studied the anatomical structure
of leaves and stem of vigorous and dwarf type pears to clarify
the mechanism of a short tree structure. They found that the
dwarf type had a smaller vessel diameter and a greater stem
cross-sectional area than the vigorous type. In citrus, Saeed et
al.[34] explored  the  relationships  among  growth  vigour  and
anatomical  characteristics  of  leaves,  stems  and  roots.  They
found  that  vigorous  rootstocks,  rough  lemon  (C.  jambhiri),
have larger xylem vessel elements in the stems and roots with
lower phloem percentage (%), when compared with dwarfing
rootstocks-  flying  dragon  (P.  trifoliata).  Zoric  et  al.[35] noticed
that  dwarfing  rootstocks  had  lower  theoretical  hydraulic
conductance  (kh)  and  a  smaller  vessel  lumen  size,  especially
when compared with vigorous rootstocks. Martínez-Alcántara
et  al.[36] also  demonstrated  lower  leaf  water  potential  and
decreased hydraulic conductance during times of high evapo-
rative  demand,  leading  to  reduced  stomatal  conductance  in
plants grafted onto size-controlling rootstocks. In apple, Zhou
et al.[37] studied the effect of different vigour controlling root-
stock  combinations  (vigorous,  semi-dwarfing  and  dwarfing
characteristics)  grafted  with  'Red  Fuji'  scion  cultivar.  They
concluded  that  reduction  in  scion  growth  of  dwarfing
rootstocks (M.9 and B.9) was related to lower palisade/spongy
parenchyma  ratios  and  hydraulic  conductance  stomatal
density  compared with  more  vigorous  rootstocks.  Therefore,
it  is  concluded  from  the  above  literature  (Table  1)  that  the
lower  hydraulic  conductance/  limited  supply  of  water  to  the
aerial  part  resulted  in  the  closure  of  stomata  and  decreased
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Fig. 1    Schematic diagram of rootstock control scion vigour.
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CO2 assimilation  rate,  possibly  limited  scion  growth  in  most
dwarfing rootstocks. 

Hormonal communications between scion and
rootstock

Phytohormones  play  a  significant  role  in  vegetative  and
reproductive  growth  and  are  considered  essential  for  root-
shoot  communication[38−40].  Hormones  are  transported  as
signal  molecules,  which  induce  tissue  differentiation  and
perform  above  and  below  the  graft  junction[41] Hormonal
signals  can  also  control  rootstock-mediated  vigour  by
modifying  gene  expression  in  the  scion  part[11].  In  earlier
literature  (Table  2),  reduction  in  plant  growth-promoting
hormones  (IAA,  ZR  and  GA3)  and  increase  in  growth-
inhibiting  (ABA)  in  dwarfing  rootstocks  have  been  studied.

However,  the  effective  hormonal  communication  of  scion
vigour is still unclear[28]. 

Auxin
Indole-3-acetic  acid  (IAA)  is  a  plant  growth  hormone

directly involved in a variety of biological mechanisms such as
cell  elongation,  differential  growth,  tissue  patterning  and
embryogenesis[38].  Lockard and Schneider[42] speculated that
the reduction in the downward movement of auxin transport
in  size-controlling  rootstocks  would  limit  root  growth.
Soumelidou et  al.[43] checked the auxin transport  capacity  of
different  size-controlling  rootstocks  and  found  that  auxin
(IAA) transport capacity was lower in dwarfing rootstock (M.9)
than that of vigorous rootstocks (MM.11) in both woody and
nonwoody  segments.  This  observation  was  confirmed  by
Kamboj  et  al.[44],  who measured the  uptake  of  radio  labelled

Table 1.    Important physiological and anatomical evidences underlying rootstock induced vigour control.

Name of
crop Rootstock/treatments Traits Key findings References

Peach K146-43, Hiawatha, Nemaguard Vegetative growth, stem
elongation, and water status
measurements

Water relations were linked with rootstock-induced
dwarfing mechanism.

[25]

Tree canopies were partially
covered (0, ~30, and ~60%), and
three rootstocks were used,
including (K146-43, Hiawatha,
and Nemaguard)

Water usage and transport Tree water status were possibly involved in the
dwarfing of scion growth by rootstocks.

[30]

‘K146-43’, ‘Nemaguard’ and
‘P30-135’

Theoretical axial xylem
conductance

Larger vessel dimensions were found in the
vigourous rootstock than dwarfing rootstocks
(‘K146-43’). The vessel density per xylem area in
‘Nemaguard’ rootstock was also lower than those
of the ‘K146-43’ and ‘P30-135’ rootstocks.

[31]

Apple JM5, JM1, JM7, JM2, and
Marubakai

Anatomical traits, sap flow, and
hydraulic conductance

The degree of dwarfing were closely associated
with the phloem to xylem ratios of roots. Therefore,
it could be a useful index for screening the
dwarfing potential of rootstocks.

[32]

Baleng, Chistock-1, SH.6/Baleng,
SH.6/Chistock-1, M.26, M.9, SH.6,
B.9

Hydraulic conductance, non-
structural carbohydrates, leaf
anatomy, gas exchange, and
chlorophyll fluorescence,

The reduction of photosynthetic rate has been
attributed to the decreased hydraulic conductivity,
which causes a decline in instantaneous
photosynthetic assimilation of the whole canopy.

[29]

Pear Dwarfing and vigourous
rootstocks

Anatomical investigations of
young stems and mature leaves

Dwarfing rootstock had lower vessel diameter and
vessel density compared with the vigourous type.
The lower growth vigour of dwarf pear may be
associated with anatomical characteristics.

[26]

Cherry Gisela 5, Mahaleb, Mazzard, Colt
PHL-A

Stem and root anatomical
characteristics and theoretical
hydraulic conductance (kh)

Lower hydraulic conductance in dwarfing rootstock
were possibly due to smaller vessel lumens and
percentage.

[28]

Citrus Troyer citrange, Rough lemon,
Sweet lime, Carrizo citrange,
sour orange and Flying dragon

Anatomical features of leaf,
stem and root

Vigourous rootstocks possessed larger vessel
elements in the stem and roots as well as lower
proportions of bark (phloem) compared with
dwarfing rootstocks.

[27]

Flying Dragon and Rubidoux
trifoliate rootstocks

Leaf water potential, hydraulic
resistance, gas exchange
measurements, xylem anatomy,
and 13C photoassimilates
transport

Lowered hydraulic conductance might be the
possible reason for rootstock-induced dwarfing in
citrus scion when grafted with dwarfing rootstock.

[33]

Olive Cairo7, Manzanill, Aggezi,
Frantoio, Coratina, Koroneiki,
Picua, Arbequina, Teffahi,
Chemlali, Dolce

Histological studies of stem Lower phloem and higher xylem (%) in vigourous
rootstock are correlated with growth vigour.

[34]

Mango Alphonso, Fajri Kalan, Sukkary
and Zebda, Tommy Atkins,
Sediek, Keitt, 13/1, Naomi, Kent,
Mabrouka, Ewais, Hindi
Besinnara, Maya

Anatomical studies of stem Xylem and phloem percentage could be used as a
dwarf indicator for the screening of rootstocks.

[35]

Rootstock mediated scion vigour
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Table 2.    Important hormonal and carbohydrates evidences underlying rootstock induced vigour control.

Name of crop Rootstock Scion Traits Key findings References

Peach Mr.S.2/5, GF677,
Armking

'Armking' Xylem exudates Tree growth was positively associated
with the xylem transport rate of cytokinin.

[37]

Apple MM.111, M.27, M.7, and
M.9

MM.111, M.9,
M.7, M.27, Gala,
Fuji

Scion above the graft union,
rootstock below the graft
union, leaf, roots, exudates,
current year stem

Reduced GA levels and higher ABA levels
were linked with a degree of dwarfing.

[48]

'Royal Gala', 'M.793',
'MM.106', and 'M.9'

'Royal Gala' Application of growth
regulators, Measurements of
tree growth, shoot-root-
shoot hormonal signalling

Dwarfing rootstocks reduce the basipetal
IAA transport to the root, thus decrease
the amount of root synthesized
gibberellin and cytokinin, transported to
the aerial part.

[34]

'Royal Gala', 'M.793',
'MM.106' and 'M.9'

'Royal Gala' Measurements of scion
growth, root growth, total
growth per tree, total dry
weight quantification of
indole-3-acetic acid,
cytokinins, and gibberellins.

Size-controlling apple rootstocks may
restrict root-produced GA19 supplied to
aerial part.

[18]

'M.9', 'MM', and
interstock
combinations,
'M.9'/'MM'

'Red Fuji' Hormone determination and
the expression of hormone
related genes.

Lower expression levels of IPT3 gene in
dwarfing rootstocks resulted in lowered
cytokinin synthesis in roots, which
resulted in inadequate supply of cytokinin
to the aerial parts, resulting in a reduction
of auxin content and scion growth.

[49]

M.9 and Baleng Crab Scion/rootstock
combinations
(Fuji/M9), Fuji/
M9/Baleng Crab,
Fuji/Baleng Crab

Determination of
phytohormone contents and
relative expressions of
MdPINs genes

Dwarfing effect was initiated by inherently
lower expression of MdPIN8 in M9
interstem.

[50]

'M.9' and 'MM.106' 'Fuji' Investigation of tree growth
and measurement of IAA to
explain the function of auxin
in controlling the dwarfing
rootstocks

The lower amount of auxin transported
from the shoots along with the root auxin
synthesis deficiencies reduced the root
growth and then decreased the supply of
root-produced substances to the shoots in
dwarfing rootstocks.

[33]

'M27', 'M9' and 'M793' 'Royal Gala' ('RG') Non-structural carbohydrate
analysis, RNA sequencing
and quantitative reverse
transcriptase PCR.

Over-accumulation flavonoids and
reduced MdAUX1 and MdLAX2 expression
contribute to the reduced auxin transport
observed in dwarfing rootstocks.

[51]

Six kinds of apple
rootstock ('Mailing 9',
'Mailing 26',
'Budagovsky 9', 'Malus
xiaojinensis', 'Malus
robusta', 'Malus
baccata') and two
grafting complexes
('Fuji/M9' and 'Fuji/Mr')

'Fuji' Trans-zeatin determination,
and expression of cytokinin
metabolic pathway genes

Low IPT5b expression with high-level
methylations in the promoter region,
leading to poor root trans-zeatin
biosynthesis in the M9 rootstock, which
may induce dwarfing.

[52]

Pear Dwarf and standard
rootstocks

− Comparative transcriptomic
analysis between standard
and dwarf pears of the
young apical stem

Major differences between dwarf and
standard pears were associated with
ribosome biogenesis and photosynthesis.

[53]

Zhongai 1 and Jinxiang − RNA-Seq analysis and the
determination of
phytohormones (GA3, IAA,
and ABA)

The dwarf mechanism of different
genotypes may be diverse, and even in
the same genotype, the dwarf character
may be controlled by many factors

[54]

Sweet cherry Ten different size
controlling (Prunus
Mahaleb L.) genotypes

− Vegetative growth
parameters and hormonal
ratio

The proportion of ABA/IAA hormones was
lesser in sturdy rootstocks than that in the
dwarf rootstocks. Moreover, the available
ABA concentration demonstrates a
relationship between growth vigour and
ABA in shoot bark of rootstock.

[47]

Litchi vigourous cultivar
(Feizixiao) and dwarf
cultivar (Ziniangxi)

− Anatomical observation,
transcriptome profiling, and
mechanisms of litchi
dwarfism

Upregulation of GA2ox in dwarf cultivar
(ZNX) samples only, showing GA may
assume a significant role in managing an
immense difference between cultivars of
dwarf and vigourous litchi cultivars.

[43]

(to be continued)
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[3H]-IAA  of  stem  segments  from  five  apple  rootstocks  which
differed in their dwarfing effect, and found a reduced uptake
and transport in dwarfing rootstock stems compared to stems
from non-dwarfing rootstocks.

According to Li et al.[45], when apple scion was grafted onto
dwarfing rootstock, the expression of auxin transporter gene
PIN1 was  substantially  decreased,  resulting  in  an  inadequate
supply of IAA to the roots, causing dwarf phenotype. Song et
al.[46] reported  that  IAA  levels  of  apple  tree  grafted  on
vigorous  ('Fuji'/MM111)  rootstock  was  higher  than  that  of
grafted  on  dwarfing  ('Fuji'/M9)  rootstock.  Besides,  the
expression  levels  of  auxin  synthesis  gene MdYUCCA10a in
leaves  and roots  of  size-controlling  rootstock  were  markedly
lower  than  taller/stronger  rootstocks.  Therefore,  a  lower
amount  of  IAA  was  transported  from  the  aerial  part  to  the
roots,  which  decreased  the  supply  of  root-produced
substances to the shoots.  Van Hooijdonk et  al.[47] stated that
dwarfing  apple  rootstocks  could  change  the  morphology  of
scion  cultivar.  'Royal  Gala'  grafted  with  dwarfing  M.9
rootstock  substantially  decreased  the  node  numbers  and
shoot  length.  In  addition,  IAA  transport  inhibitor,  N-1-
naphthylphthalamic  acid  (NPA),  injected  into  the  stem  of
taller/vigorous  rootstocks,  resulted  in  reduced  shoot  length
and  architectural  modifications  closely  resembled  with  M.9
rootstock. Therefore, it is suggested that the roots of dwarfing
rootstocks  obtain  less  IAA  from  the  scion,  thus,  reduce  the
amount  of  cytokinin  and  gibberellins  produced  by  roots  for
transportation  to  the  scion.  Consequently,  the  decrease  of
cytokinin  supply  may  alter  the  scion  structure  by  reducing
branching. 

Cytokinin
In contrast to auxins, cytokinin (CKs) are synthesized in the

root  and  transported  to  the  aerial  part,  where  they  regulate
some of  the main developmental  processes,  including shoot
growth and production[15].  The control of vigour may also be
due to decreased xylem solutes (e.g., cytokinin) caused by the
graft  junction  between  rootstock  and  scion[43,48].  They  also
noticed  that  the  cytokinin  concentration  of  dwarfing  apple
rootstocks  in  root  pressure  exudates  and leaf  xylem sap was
lower  than that  of  vigorous  rootstocks.  Orange trees  grafted
on  less  vigorous  'Troyer'  (Poncirus  trifoliate × Citrus  sinensis)
rootstock also have lower cytokinin-like activity in branch sap
than grafted on vigorous  'Volkamer'  lemon rootstock[49].  The
content  of  cytokinin  in  the  stem  fluid  from  different
rootstocks  was  different.  The  cytokinin  concentrations  were
significantly  higher  in  vigorous  rootstock  (MM.106)  as

compared with size-controlling (M.27 and M.9) rootstocks.
Similarly,  Sorce  et  al.[50] also  noticed  a  positive  correlation

between tree vigour and cytokinin transport rate in the xylem
of  both  un-grafted  and  grafted  peach  trees.  Trees  grafted
with  dwarfing  rootstocks  contained  lower  cytokinin  levels
than vigorous rootstocks[45]. Most recent studies showed that
cytokinin  biosynthesis  is  necessary  for  bud  break  initiation
and  transfer  of  auxin  from  buds  in  an  apple  tree  through
primary  shoot  apex  or  decapitated  apple  tree.  The  relative
expression  of MdPIN1 indicates  that  the  export  of  IAA  from
axillary buds is limited due to the absence of CK synthesis[51].
In  apple,  the MdIPT5b gene was suggested to  have a  pivotal
role  in  stimulating  the  dwarfing  characteristics  of  M.9
rootstock[52]. Taken together, these evidences suggested that
the poor root cytokinin biosynthesis and transportability from
roots  to  shoots  are  key  factors  responsible  for  dwarf  tree
morphology. 

Gibberellin
Gibberellins  play  a  fundamental  role  in  plant  growth  and

are  a  controlling  factor  in  plant  architecture [53−55].  There  is
substantial  evidence  suggesting  that  disruption  in  GA
metabolism plays a vital role in the dwarfing of the scion[22,28].
Bulley  et  al.[56] described  the  role  of  gibberellins  in  apple
shoot growth. They explained that down-regulation of GA3ox
and GA20ox genes  reduced  the  GA  level,  which  resulted  in
dwarf phenotypes.

In  apple,  Van  Hooijdonk  et  al.[19] observed  that  in  the  first
growing  season  after  grafting,  the  average  concentration  of
GA19 in  the  xylem  sap  of  the  'Royal  Gala'  grafted  on  the  M.9
rootstock  was  twice  than  that  of  vigorous  rootstocks.
Interestingly,  the  node  number  of  primary  and  secondary
shoots  of  dwarfing  rootstocks  restores  after  scions  treated
with  GA  application.  In  contrast,  over-expression  of GA2ox
genes,  which  encodes  enzymes  that  convert  active  forms  of
GAs into inactive forms,  also produces dwarf  plants[57].  Scion
cultivars  grafted  with  dwarfing  rootstocks  contained  lower
levels  of  GA19  in  the  xylem  exudates  compared  with  other
vigorous rootstocks[58].

Hu et al.[59] noted that the GA2ox gene was up-regulated in
dwarf  litchi  cultivar,  demonstrating  that  GA  may  play  a  vital
role in controlling the substantial  differences between dwarf
and  vigorous  litchi  cultivars.  Similarly,  the  transcriptome  of
apple  tree  graft  with  dwarf  rootstock  revealed  that  GA
biosynthesis  genes  are  decreased[60].  The  higher  expression
levels of a GA catabolic gene and reduced GA level in persim-

Table 2 (continued)
 

Name of crop Rootstock Scion Traits Key findings References

Sweet
Persimmon

Rootstock (Diospyros
lotus L.) and
interstock/rootstock
(Nantong-
xiaofangshi/Diospyros
lotus L.)

'Kanshu' Hormone levels and water
conductance

The expression of GA2ox, DELLA, and
SPINDLY genes were upregulated and
associated with a decrease level of GA in
scions grafted on the interstock.

[55]

Citrus Fragrant orange, Rough
lemon, Shatangju
mandarinCanton
lemon, and Red
tangerine

'Shatangju' Dwarfing mechanisms and
the influence of rootstock on
scion growth

IAA and GA were significantly and
positively related to growth vigour. the
qRT-PCR analysis showed that expression
levels of ARF1, ARF8, GH3, and IAA4 were
negatively correlated with the growth
vigour and IAA content.

[56]

Rootstock mediated scion vigour
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mon  scion  stem  grafted  with  size-controlling  interstocks[61].
Furthermore,  a  dwarf  plum  hybrid  with  elevated  transcript
levels  of  a  major  GA  catabolic  gene,  GA2ox,  exhibits  shorter
internodes  and  reduced  stem  elongation;  when  used  as
rootstocks,  it  also  decreases  the  amount  of  bioactive  GAs  in
scions  and  reduces  scion  growth[62].  In  summary,  this
literature  shows  that  dwarfing  rootstocks  decreased  GA
concentration  and  altered  gene  expression  associated  with
GA synthesis, resulting in a dwarf phenotype. 

Abscisic acid
Abscisic acid (ABA) is known to regulate various aspects of

plant  development  and  growth  attributes  such  as  leaf
abscission, stomatal closure and root growth inhibition[63−65].
ABA  controls  shoot  and  root  growth  in  plants  that  regulate
tolerance  responses  against  different  stress  factors,  and  it  is
also  capable  of  inducing  dwarfism  in  higher  plants[25,66].
Similarly,  Jindal  et  al.[67] compared  ABA-like  activity  in  the
shoots  of  dwarf  and  normal  type  mutants  of  'Golden
Delicious'  and  'Cortland'  apples  and  found  that  maximum
levels of ABA were reported in dwarf mutants; similar findings
were  observed  during  terminal  bud  formation,  rapid  shoot
elongation,  and  termination  of  cambial  growth  phases.
Kamboj  et  al.[48] showed  that  the  size-controlling  rootstocks
had maximum levels of ABA and ABA-IAA ratio in shoot bark
compared  with  vigorous  rootstocks.  Noda  et  al.[68] reported
that  citrus  trees  grown  on  dwarfing  rootstock  had  a  higher
concentration of ABA in new shoots than vigorous rootstocks,
and the higher ABA levels were believed to be responsible for
the  reduction  of  plant  growth.  Tworkoski  et  al.[69] reported
that  ABA  concentrations  found  in  the  shoot  of  apple  plants
grown with dwarfing 'M.9' rootstocks were higher than those
found  on  vigorous  'Antonovka'  rootstocks.  A  high  level  of
ABA in the xylem sap of trees grafted onto dwarfing rootstock
seems  important  because  of  its  role  in  vigour  control  and
drought  tolerance.  Another  possibility  is  that  the  abnormal
xylem  configuration  at  the  graft  union  reduces  the  value  of
hydraulic  conductance  (HC)  and  increases  ABA  level  in  the
xylem  stream[29,69].  Moghadam  and  Shabani[70] worked  on
sweet cherry (Prunus Mahaleb L.) rootstocks and reported that
the  ratio  of  ABA/IAA  in  vigourous  rootstocks  was  minimum
compared with more dwarfing rootstocks.  Furthermore, they
observed a close relationship between ABA concentrations in
shoot  bark  and  growth  vigour.  Briefly,  ABA  concentrations
were found to be higher in the tissues of dwarfing rootstocks
(act  as  a  growth  inhibitor)  and  impaired  growth
characteristics  by  suppressing  the  accumulation  of  other
phytohormones. 

Rootstocks influence mineral uptake and scion
growth

Nutrient  and  water  capture  through  more  efficient  root
system architecture and/or uptake and transport mechanisms
are major rootstock traits that regulate plant growth and crop
yield[71]. The influence of rootstocks on leaf mineral content is
related  to  the  mineral  uptake  capacity  of  rootstocks  due  to
their  specific  root  morphology[72].  Al-Hinai  and  Roper[73] also
reported  that  rootstock-scion  interactions  resulted  in  the
difference  of  transportation  and  absorption  of  mineral

nutrients to the scion. Previous studies have shown (Table 3)
that  the  nutritional  status  of  trees  is  related  to  the  vigour
controlling capacity of rootstocks[74−78].

Hirst  and  Ferree[79] reported  that  trees  grafted  on  a  local
seedling  were  less  prone  to  potassium  (K)  and  calcium  (Ca)
deficiency  than  those  grafted  on  MM.106  rootstock.  Aguirre
et  al.[80] noted  that  the  low  mineral  absorption  rate  of
dwarfing rootstocks is one of the possible reasons for mineral
deficiencies  in  'Golden  Delicious'.  Previous  studies  have
shown  that  the  concentration  of  potassium  (K)  and
magnesium  (Mg)  in  leaves  of  trees  grafted  on  vigorous
rootstocks  were  higher  than  those  grafted  on  dwarfing
rootstocks.  The  nitrogen  (N)  concentration  of  trees  grafted
onto  dwarfing  rootstocks  was  higher  than  that  of  vigorous
rootstocks[80].  Zarrouk  et  al.[76] reported  that  different  peach
rootstocks  significantly  affect  the  concentrations  of  essential
nutrients,  namely  [(Nitrogen  (N),  Phosphorus  (P),  Potassium
(K), Calcium (Ca), Magnesium (Mg), Manganese (Mn), Iron (Fe),
Sodium  (Na),  Zinc  (Zn),  and  Copper  (Cu)].  Furthermore,  the
effect  of  five  rootstocks  grafted  with  'Imperial  Double  Red
Delicious'  on  leaf  mineral  contents[81].  The  results  showed
that  the  concentration  of  N  and  K  in  the  leaves  of  M7  and
MM106  rootstocks  was  significantly  lower  than  seedling
rootstock.  Absorption  efficiency  and  accumulation  of
potassium  were  observed  differently  in  different  rootstocks;
especially  under  the  conditions  of  K-  deficiency,  these
differences turn out to be more and more evident[82].

The  leaves  of  nectarine  showed  a  significant  difference  in
mineral  nutrient  concentration  when  grafted  onto  Prunus
rootstocks[83].  Several  studies  have  shown  that  there  are
substantial  differences  in  nutrient  absorption  and  transport
among  different  rootstocks.  Moreover,  the  effect  of  most
rootstock  studies  was  inconsistent  from  one  site  to  another,
the  type  of  scions  and  change  over  time.  No  common
rootstocks can accomplish all the requirements of climate and
soil  conditions.  Many  of  the  rootstocks  are  utilized  for
adaptability  to  different  environmental  conditions[84].  Based
on  the  anatomical  study  of  apple  rootstocks,  it  is  concluded
that the anatomical structure of the xylem affects the mineral
absorption  rate[85].  The  ability  of  hydraulic  conductance  to
supply  mineral  nutrients  to  leaves  through  roots  and  stems
are  linked  to  the  anatomical  structure  of  rootstock[84].  The
lower  mineral  absorption  rate  will  decrease  mineral
concentrations,  which  may  lead  to  a  mineral  deficiency.  In
previous studies, reduced hydraulic conductivity also reduced
the rate of mineral absorption, growth and yield performance
suggested as a possible rootstock dwarfing mechanism[86]. 

Rootstocks trigger contrasting photosynthetic
responses

Photosynthetic efficiency is  generally  considered the main
physiological  parameter  for  evaluating plant  growth activity,
biomass  and  yield  potential[87,88].  Net  photosynthetic  rate  is
one  of  the  critical  factors  affecting  fruit  yield[89,90],  various
studies  have  shown  that  rootstocks  directly  impact  gas
exchange  characteristics[91,92].  There  is  a  positive  correlation
between  the  photosynthetic  performance  and  the  produc-
tion  ability  of  plants[93].  In  fruit  trees,  leaf  photosynthetic
characteristics  are  significantly  affected  by  dwarfing  root-
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stocks throughout the growing season. Still, there is a lack of
consensus  regarding  the  correlation  between  dwarfing
rootstocks and increased leaf photosynthesis.

However,  Baugher  et  al.[94] have  highlighted  a  negative
effect  of  size-controlling  rootstocks  on  photosynthesis  in
scion leaves. Other studies have however reported that apple
trees  grafted  onto  size-controlling  rootstocks  with  more
significant  dwarfing  effects,  had  a  lower  photosynthetic
rate[81,95].  In  contrast,  some  studies  reported  that  the Pn rate
of field planted apple trees grown on dwarfing rootstock (M-
9)  was  higher  than that  of  M.7[91].  The  effect  of  rootstock  on
the  Pn  rate  may  represent  a  mechanism  through  which
rootstock  employs  its  impact  on  scion  growth[96].  These
conflicting  findings  may  be  due  to  trees  of  different  ages,
differences in sampling methods, or differences between the
years of testing. In another study, Zhou et al.[37] provide evide-
nce that the limited photosynthetic capacity and leaf area are
significant  causes  of  the  reduced  canopy  photosynthetic

assimilation observed in dwarfing grafted apple trees.
Moreover, Hayat et al.[27] reported that a significant decline

in Pn rate  was  observed  in  'Red  Fuji'  grafted  onto  dwarfing
(M.9)  rootstock  compared  with  more  vigourous  rootstocks
(M.26,  Chistock-1  and  Baleng).  The  application  of  interstock
with greater dwarfing abilities causes a decrease in photosyn-
thesis  and root-shoot ratio,  but yields better fruit  qualities in
8-year-old Red Fuji trees[26].  These studies have indicated the
notable  role  of  photosynthesis  in  regulating  plant  growth
through which rootstock employs its impact on scion growth. 

Genetic markers associated with dwarfing
rootstocks

To better  study the  dwarfing mechanism and find reliable
dwarfing  markers  is  a  fast  method.  Numerous  studies  have
emphasized  that  DNA  markers  can  identify  rootstocks  more
accurately  than  morphological  markers  because  develop-

Table 3.    Influence of rootstock on the vegetative growth, yield, fruit quality, and mineral uptake of grafted plants.

Name of crop Family Name of rootstocks Name of scion
cultivar Traits References

Apple (Malus
domestica Borkh.)

Rosaceae M.9, M.26, Chistock-1 and Baleng 'Red Fuji' Dwarfing traits, scion
morphology, and
mineral concentration

[8]

M.9, MM.106, MM.111 and local seedling
(Malus domestic cv. 'Local'

'Golden Delicious'
and 'Royal Gala'

Growth vigour and
mineral concentration

[22]

M. hupehensis Rehd., M. prunifolia Borkh.,
M. robusta Rehd., M. sieversii Roem, and
M. rockii

− Plant growth and
potassium (K) use
efficiency

[58]

Peach (Prunus
persica L.)

Rosaceae Seven hexaploid plum rootstocks
(Adesoto, Monpol, Montizo, P. Soto 67
AD, PM 105 AD, GF 655/2 and Benasque)

'Catherina' Leaf mineral
concentration and fruit
quality traits

[59]

almond × peach hybrids rootstocks
(Adafuel, Adarcias, GF 677, Cadaman,
Garnem and Felinem)

Queen Giant and
Tebana

Vigour, yield and mineral
concentration

[52]

Pear (Pyrus
communis L.)

Rosaceae Seedlings of Local and colonal pyrus, MA,
MC and BA 29 Quince (Cydonia oblonga
M.)

Santa Maria Fruit quality, yield and
leaf uptake of mineral
elements

[63]

Plums (Prunus
domestica L.)

Rosaceae Marianna GF8-1 and Marianna GF10-2
(Prunus cerasifera × munsoniana)

Rainha Claudia
Verde

Tree vigour, fruit quality
and fruit mineral
concentration

[64]

Apricot (Prunus
armeniaca L.)

Rosaceae Evrica, Krymsk 86, Torinel, PAC 00-08 and
PADAC 01-47

Two apricot
cultivars ('E-101'
and 'E-404')

Fruit yield and quality [65]

Pistachio
(Pistacia vera L.)

Anacardiaceae Badami-sefid, Sarakhsi, Kalle-ghouchi,
Daneshmandi, Barg-Seyah and Akbari

Akbari and Barg-
seyah

Mineral uptake [66]

Grape (Vitis
vinifera L.)

Vitaceae 'Couderc 161-49', 'Sori', 'Kober 125AA',
'Börner', 'Kober 5BB'

'Regent' Mineral nutrition and
heavy metals uptake

[67]

Two different rootstocks including (low
and high vigour)

Cabernet
Sauvignon

Control of scion vigour,
mineral nutrition and
whole plant biomass

[68]

'IAC 766', 'IAC 572', 'IAC 313' and 'IAC
571-6'

'Venus' Yield and nutrient
uptake

[69]

Citrus Rutaceae Nine different citrus rootstocks Kinnow mandarin
(Citrus reticulata
Blanco L.)

Leaf nutrient status,
yield and fruit quality

[70]

Rough lemon, Karna Khatta, Carrizo
citrange, Rangpur lime, Troyer citrange,
Jatti Khatti and sour orange

Kinnow mandarin Root morphology,
mineral uptake and
nutrient absorption
capacities

[71]
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mental stages and environmental factors inhibit physiological
and  biochemical  markers.  DNA  markers  remain  the  most
reliable  genetic  markers[97].  Apple  dwarfing rootstock (M9)  is
used globally as a genomic asset to breed new rootstocks[98].
Pilcher  et  al.[99] reported  for  the  first  time  that  the  dwarfing
ability  of  the  apple  rootstock  was  named  Dwarfing  1  (Dw1),
which  was  detected  at  the  position  of  2.5-cM  between  the
RAPD  DNA  marker  NZraAM18_700  and  simple  sequence
repeat (SSR) marker CH03a09 at the linkage group 5 of apple
rootstock 'Malling 9'. Dw1 is a major element because most of
the  dwarf  and  semi-dwarf  apple  rootstocks  carry  this  allele.
Gene  identification  of Dw1 is  a  major  achievement  in
studying the dwarfing mechanism of apple rootstocks.

Furthermore,  Foster  et  al.[98] identified Dw1 and Dw2
dwarfing  loci  in  a  cross  between  apple  rootstock  'M9'  and
non-dwarf  'Robusta5'. Dw2 was  identified  on  LG11,  and  four
small QTLs with little effect on LG6, LG9, LG10, and LG12. Dw1
and Dw2 had  the  most  significant  impact  on  rootstock
dwarfing,  and Dw1 had  greater  influence  than Dw2.  The
screening  of  several  dwarfing  and  semi-dwarfing  apple
rootstocks  found  marker  alleles  related  to Dw1 and Dw2,
which  indicates  that  most  of  the  apple  dwarfing  rootstock
had similar genetic sources.

The precocity  and intensity  of  trees  greatly  stimulate their
effectiveness  in  commercial  production.  Dwarfing rootstocks
permit  a  higher  number  of  plantations  with  efficient
flowering allowing early fruit-bearing apple. A previous study
reported  the  first  QTL  linked  to  vigour  and  flowering
characters  in  pear  rootstocks.  A  high-density  genetic  map
(SNP-based)  was  constructed,  consisting  of  597  and  113
polymorphic  molecular  markers  in  pear  and  apple
respectively,  which  allowed  finding  QTLs  for  precocity  and
scion vigour in the linkage groups LG5 and LG6. The position
of  LG5  QTL  was  consistent  with  that  of  apple  'M9'.  An  early
maturing  and  dwarfing  allele  linked  to  apple Dw1 was
isolated  from  pear  germplasm.  This  LG5  QTL  from  pear  and
apple increases the possibility of Dw1 dwarfing locus in other
Rosaceae species[100].  In  apple,  two  QTLs  identified  the
homology  of  dwarfing  QTLs Dw1 and Dw2,  and  a  third  QTL
identified on chromosome 13. The closely linked QTL flanking
sequence-tagged  site  markers  improve  the  resolution  of  the
loci,  thereby  leading  to  the  discovery  of  dominant  and
epistatic  interactions  among  loci  and  further  reported  the
significant  negative  correlation  between  stem  diameter  and
root  bark.  The relationship between rootstock-induced scion
dwarfing  and  root  bark  percentage  was  confirmed,  and  a
three-locus  model  was  proposed.  Therefore,  the  newly
identified QTL (Rb3)  on chromosome 13 might  be related to
the  third  dwarfing  QTL Dw3,  not  previously  identified[101].
These results will help to expand the scope of marker-assisted
selection  and  finding  the  basis  for  dwarfing  apple  rootstock
breeding.

The  achievement  of  whole-genome  sequencing  delivers  a
chance  to  apprehend  the  phylogenetic  relationship  of  the
ABC  transporters  family  genes  in  Rosaceae  species.  ATP-
binding cassette transporter genes are a varied, omnipresent
and wide superfamily that performs several processes. In nine
Rosaceae  genomes, 1323 ABC  transporter  genes  were
detected:  179,  141,  174,  138,  122,  118,  191,  and  98  respec-
tively  from Rosa  chinensis, Prunus  dulcis, Pyrus  communis,

Prunus persica, Fragaria vesca, Prunus avium, Malus domestica,
and Rubus  occidentalis.  Furthermore,  transmembrane
structures,  subcellular  localization,  and  protein  motifs  were
studied.  Based  on  structural  features  and  phylogenetic
analysis,  these  ABC  transporters  were  assembled  into  eight
subfamilies.  In  apple  rootstocks,  the  W-box  deletion  in  the
promoter  of  MdABCG28  was  linked  to  gene  expression  and
dwarfing  phenotype.  The  overexpression  of  MdABCG28
enhanced shoot growth in mutants of Arabidopsis[52]. 

Conclusion

Grafting  is  a  centuries-old  technique  used  in  several
horticultural  species  to  improve  biotic  and  abiotic  stress
resistance,  yield  and  quality.  The  alterations  caused  by
grafting,  as  well  as  the  physiological  and  fewer  genes
involved  in  molecular  mechanisms  related  to  dwarfing,
remain unclear. The use of dwarfing rootstocks or interstock is
a primary approach to produce dwarfing fruit  trees,  as  these
rootstocks  and  interstock  result  in  reduced  tree  volume,
height,  canopy  diameter  and  circumference.  The  current
evidences  showed  that  size  control  of  rootstock  is  regulated
by  a  complex  interaction  between  scion  and  rootstock.  The
dwarfing  rootstocks  have  a  smaller  root  system  (i.e.,  root
volume, root diameter, number of root tips and branches), so
the  soil  absorbs  less  water  and  nutrients.  A  lower  volume  of
water  is  transported  to  the  scion  due  to  lower  hydraulic
conductance and reduced size of xylem vessels that influence
net  photosynthetic  rate  (Pn)  and  plant  growth.  The  IAA
absorbed  from  the  scion  of  dwarfing  rootstock  was  less,
which  affects  the  production  of  cytokinin  (CK)  and  gibber-
ellins  (GA)  produced  by  the  root  system,  and  ultimately  less
are transported to the aerial part and reduce plant growth.
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