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Abstract
Shade caused by trees or buildings can affect the quality and growth of turfgrasses. Thus, breeding for shade tolerance is an essential component

of  most  turfgrass  improvement  programs.  The  objective  of  this  study  was  to  evaluate  the  performance  of  seashore  paspalum  (Paspalum
vaginatum Sw.) breeding lines under shade in multi-environment trials. Germplasm sources were 20 lines from the University of Georgia seashore

paspalum breeding program and two checks, the cultivars 'SeaDwarf' and 'SeaStar'. Field trials were conducted from 2016 to 2019 under shade

structures designed to reduce ambient sunlight at three locations: Citra (FL), Tifton (GA), and Raleigh (NC). The response variables evaluated were

percent living ground cover (%GC), dark green color index (DGCI), canopy height (CH) and turfgrass quality (TQ). Data were analyzed by mixed

model approaches using ASReml-R, and the t-statistics were used to group the entries. Significant genetic variances were observed in the single-

location-repeated-measures analysis for CH and DGCI at Citra and Tifton, %GC at Citra, and TQ at Raleigh. Spearman correlations of the predicted

values for entries between locations ranged from low to moderate, with the exception of between Citra and Tifton (0.76) for CH. There were a few

breeding lines with superior performance to the entry average for all traits for which the entry variance was significant. In conclusion, genetic

variability was observed for all traits and superior seashore paspalum breeding lines for multiple traits were identified under shade.
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INTRODUCTION

Seashore  paspalum  (Paspalum  vaginatum Sw.)  is  a  warm-
season turfgrass species mainly used on golf  courses[1,2].  The
species has desirable characteristics, such as a fast-spreading
growth  habit  and  good  turfgrass  density,  and  it  is  known  to
have  excellent  tolerance  to  abiotic  stresses,  especially  to
saline  soils[2,3].  In  1993,  the  seashore  paspalum  breeding
program  was  initiated  at  University  of  Georgia  (UGA)  by
collection  and  evaluation  of  germplasm.  However,  crosses
started only in 2003 after overcoming limitations in dormancy
of  hybrid  seed  and  understanding  the  extent  of  sexual
compatibility among the germplasm accessions[3]. Due to the
low  levels  of  genetic  variability  in  the  germplasm
collection[3−5],  in  vitro  culture  has  been  used  as  a  breeding
tool to induce additional genetic variability[6,7].

Foliar  shade  or  structural  shade  influence  turfgrass
morphology and physiology[8−10].  In addition to modification
of microenvironments in terms of temperature and humidity,
both  types  of  shade  reduce  light  intensity  and  can  also
change  spectral  quality,  which  affect  levels  of

photosynthetically active radiation[11,12]. Light is perceived by
photosensory  receptors,  which  modulate  the  extent  of
avoidance  and  acclimation  responses[12,13].  Shade  avoidance
responses produce changes in plant morphology that reduce
exposure  to  shade,  whereas  shade  acclimation  responses
reduce  the  impact  of  shade,  for  example,  by  chloroplast
accumulation  and  stem  respiration[12].  In  turfgrass,
summarized  by  Gardner  and  Goss[14],  morphology  changes
caused  by  shade  include  decreases  in  leaf  thickness,  leaf
width,  stem  diameter,  dry  weight,  rhizome  and  stolon
growth;  reduced  tillering  and  shoot  density;  and  increased
internode  and  leaf  length,  plant  height  and  vertical  leaf
orientation[15−17].  Consequentially,  these  morphological
changes  can  result  in  decreased  turfgrass  quality[18,19] and
density[18], reduced persistence[9] and traffic tolerance[20], and
slower establishment rates[19].

Previous  studies  evaluated  the  performance  of  seashore
paspalum cultivars under shade[18,21].  Jiang et al.[18] observed
that  most  paspalum  entries  exhibited  better  low  light
tolerance  than  hybrid  bermudagrasses  under  both  low  light
levels evaluated (70 and 90%). Baldwin et al.[21] evaluated the
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performance  of  warm-season  turfgrass  species  under
different light spectral  qualities  at  65% shade reduction,  and
the seashore paspalum entry performed similar or superior to
bermudagrass  entries  but  inferior  to  the  zoysiagrass  entry.
However,  screening  genotypes  under  shade  in  the  earlier
stages  of  selection  in  a  breeding  program  is  important  to
facilitate  the  development  of  cultivars  with  superior  shade
tolerance.

Multi-environment  trials  are  useful  in  plant  breeding
because  they  allow  screening  of  genotypes  for  adaptability
and  stability  across  target  environments,  and  to  verify  the
relationship  between  those  target  environments[22−24].  Type-
B  genetic  correlation  is  the  correlation  among  genotypes
across environments (locations or measures),  and it indicates
the  amount  of  genotype-by-environment  interaction  (GEI)
across  target  environments[25].  Additionally,  the  crossover
type  of  GEI  is  the  biggest  challenge  for  breeders  because  it
results  in  changes  in  genotype  rankings,  and  subsequently,
the  best  performing  genotype  might  not  be  the  same  in  all
target  environments[26].  For  this  reason,  quantifying changes
in  genotype  rankings  between  pairs  of  environments  is
essential.  Therefore,  the  objective  of  this  study  was  to
evaluate  the  performance  of  seashore  paspalum  breeding
lines  under  shade  in  multi-environment  trials.  The  specific
objectives were to: (i) estimate type-B and Spearman genetic
correlations  of  seashore  paspalum  breeding  lines  across
measures  and  between  target  environments,  respectively,
and  (ii)  assess  the  performance  of  breeding  lines  for  target
environments. 

RESULTS

For  the  residual  matrix,  the  heterogeneous  power  (EXPH)
matrix  structure  resulted  in  the  lowest  Bayesian  Information
Criterion (BIC) for each trait in each location, except for CH in
Raleigh, and significance by the likelihood ratio test (LRT, p <

0.05)  was  also  observed  by  comparing  this  model  to  that
using  compound  symmetry  (CS;Supplemental  Table  2).  For
the genetic matrix, the lowest BIC was observed in the model
using  CS  for  each  trait  in  each  location  (Supplemental  Table
2). Significant genetic variance was observed by LRT (p < 0.05)
for  %GC at  Citra,  DGCI  and CH at  Citra  and Tifton,  and TQ at
Raleigh (Fig. 1; Supplemental Table 3). The variance of entries-
by-measures  interaction  was  non-null  by  LRT  (p <  0.05)  for
%GC at Citra and Tifton, DGCI at Citra, CH at Raleigh, and TQ
at  Tifton  (Supplemental  Table  3).  Heritability  values  ranged
from null  (0.00)  to  moderate (0.55)  for  %GC,  moderate (0.69)
to  high  (0.88)  for  DGCI,  low  (0.34)  to  high  (0.83)  for  CH,  and
null (0.00) to moderate (0.62) for TQ (Fig. 1).

The  type-B  genetic  correlation  was  higher  for  CH  at  Citra
and  Tifton,  TQ  at  Raleigh,  and  DGCI  at  Tifton  (Fig.  1).
Meanwhile,  moderate  estimates  of  this  parameter  were
observed for  %GC and DGCI at  Citra.  Low and null  estimates
were obtained for all other traits (Fig. 1).

Spearman  correlations  between  predicted  values  from
single  location  analysis  ranged  from  moderate  negative  to
high  positive  across  traits  (Fig.  2).  For  CH,  the  correlation
estimate  was  high  for  Citra-Tifton  (0.76),  whereas  it  was
moderate  for  Citra-Raleigh  and  Raleigh-Tifton.  For  TQ,  the
correlation  estimates  ranged  from  low  (Tifton-Raleigh  and
Citra-Raleigh)  to  moderate  (Citra-Tifton).  The  estimates  were
low for all pairs of locations for %GC, and moderate for Citra-
Tifton for DGCI.

In  the  principal  components  analyses  (PCA),  the  first  two
principal  components  explained  71,  88  and  73%  of  the
variation at Citra, Raleigh, and Tifton, respectively (Fig. 3). The
correlation  between  locations  or  traits  can  be  visualized  by
the  angle  between  vectors,  where  0°  and  180°  indicate  that
they are positive and negatively correlated, respectively,  and
90°  indicates  that  they  are  not  correlated.  In  the  multi-trait
PCA,  correlation  estimates  between  traits  varied  across
locations:  %GC-CH  at  Citra  and  %GC-TQ  at  Raleigh  were
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Fig. 1    Type-B genetic correlation (rg) across measures and generalized measures of heritability (H2) of 2016−2019 shade field trials evaluated
for canopy height (CH), dark green color index (DGCI), percent living ground cover (%GC), and turf quality (TQ) in Citra (FL), Raleigh (NC) and
Tifton (GA). * Entry variance significant by LRT at 0.05 probability level.
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highly positively correlated, DGCI-TQ at Citra and DGCI-CH at
Tifton  were  highly  negatively  correlated,  and  the  rest
presented  low  correlation  estimates  (Fig.  3).  In  turfgrass,
genotypes with higher %GC, TQ and DGCI, and smaller CH are
desirable.  At  Citra,  breeding  lines  UGP228  and  UGP269  had
better performance for %GC; 'SeaStar' for TQ; UGP73, UGP198
and  31.15-2  for  DGCI;  and  UGP198,  SR31-15-15,  SR31-15-14
and  'SeaDwarf'  for  CH (Fig.  3).  In  Raleigh,  while  SR31-15-14,
UGP73  and  both  checks,  'SeaStar'  and  'SeaDwarf',  had
superior  performance  for  CH,  UGP198,  UGP3,  UGP145,
UGP171  and  SR31-15-15  were  the  best  entries  for  both  TQ
and  %GC.  In  Tifton,  UGP182  and  UGP198  had  good
performance for both CH and DGCI. Meanwhile, UGP250 and
'SeaStar' were the top performing entries for TQ and %GC.

Experimental lines performed above the t-BLUP average, at
0.05  significance  level,  in  all  locations  and  for  all  traits  for
which  the  entry  variance  was  significant  (Fig  4).  In  Citra,
UGP228 performed better  than the t-BLUP average for  %GC;
31.15-2,  UGP198 and UGP73 for DGCI;  and UGP182,  UGP198,
SR31-15-14  and  SR31-15-15  for  CH.  In  Tifton,  UGP198  and
SR2014-1E had superior performance for CH; and UGP198 and
UGP182  for  DGCI.  In  Raleigh,  UGP198  and  UGP3  performed
better  than  the  entry  t-BLUP  average  for  TQ.  Neither  of  the
checks  performed  statistically  above  the  t-BLUP  average  for
each trait with exception of 'SeaDwarf' for CH in Citra. 

DISCUSSION

Previous  studies  have  identified  low  levels  of  morpholo-
gical  variation[2] and  narrow  genetic  diversity[4] among  culti-
vars  of  this  species.  Furthermore,  low levels  of  genetic  varia-
tion for  TQ were observed among early  generation seashore
paspalum breeding lines in multi-environment trials[5].  Given
that genetic gain is directly related to the presence of genetic
variability  in  a  breeding  program,  this  apparent  lack  of
variation  poses  a  critical  challenge  to  seashore  paspalum
breeders.  However,  some  adaptive  characters  are  expressed
only when genotypes are exposed to a given environment[27],
and thus,  a population can present higher genetic variability
under stress  conditions.  Despite the lower genetic  variability
usually  observed  in  seashore  paspalum,  we  observed
significant  genetic  variability  under  stress  conditions  for  all
traits  evaluated  in  the  present  study,  except  for  TQ  in  Citra;
%GC and TQ in Tifton; and %GC and CH in Raleigh. Therefore,
these  results  suggest  there  is  some  genetic  variability  for
adaptative  characteristics  such  as  shade  avoidance  and
acclimation  responses  in  this  germplasm,  since  morpholo-
gical  changes  can  affect  %GC,  CH  and  TQ[14,18,19],  and  DGCI
can be related to chlorophyll content[28,29]. Moreover, genetic
variance  directly  influences  the  heritability  of  a  trait,  which
ranged  across  traits.  Estimates  of  heritability  were  higher  at
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Fig. 2    Spearman correlation estimates of 2016−2019 seashore paspalum shade field trials evaluated for canopy height (CH), dark green color
index (DGCI), percent living ground cover (%GC), and turf quality (TQ) in Citra (FL), Raleigh (NC) and Tifton (GA).
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Citra for all traits, except TQ (Fig. 1).
Significant  interactions  between  genotypes  and  measures

were  observed  for  some  traits  in  some  locations.  Similarly,
type-B genetic correlation estimates were below 75% for the
majority  of  traits  and  locations,  indicating  genotype
performance was not consistent across measures. Interaction
between  genotypes  and  measures  (or  seasons)  was  also
observed  in  other  warm-season  turfgrass  studies[30,31].  This
poses  a  challenge  in  warm-season  turfgrass  breeding,
especially  in  transitional  zones  where  warm-season  species
go  dormant  in  winter,  because  good  performance  across
seasons is desirable in turfgrass cultivars. Thus, genotype-by-
environment  interaction  (GEI)  studies  are  important  to
identify  more  stable  genotypes  across  seasons,  and  cold
tolerance studies are essential to develop cultivars with good
performance in lower temperature seasons.

The  variation  for  magnitude  and  significance  of  genetic
variance across locations is  due to GEI.  Spearman correlation
estimates  confirmed  the  presence  of  crossover  GEI  for  the
target  environments  for  all  traits.  Local  predictable  and
unpredictable factors influence genotype responses, resulting
in  unstable  genotype  performance  across  target
environments[23,24,32].  In  our  study,  the  evaluations  at  Citra

started  one  year  later,  which  perhaps  contributed  to
increased effect differences for unpredictable factors, such as
year-to-year  variation  in  rainfall  and  solar  radiation.  This,
consequently,  would  affect  the  magnitude  of  GEI  across  the
target  locations.  Additionally,  in  our  study,  the  shading
percentage  of  the  neutral  density  shade  cloth  used  ranged
from 60% to 73% across locations.  Perhaps these differences
also contributed to the presence of GEI.  In a pasture mixture
of  four  species  (Lolium  perenne L., Holcus  lanatus L., Trifolium
repens L.,  and Lotus  pedunculatus Cav.),  higher  performance
impact  was  observed  in  shade  levels  above  60%  and/or
periods  of  shade  longer  than  4  months[33].  In  turfgrass,  an
increment  of  9%  of  shade,  from  56  to  65%,  resulted  in  a
greater  reduction  in  dry  matter  percentage  of  clipping
material  and  turfgrass  quality  in  bermudagrass  (Cynodon
dactylon L.)  and  bentgrass  (Agrotis palustris Huds.),  whereas
bluegrass  (Poa supina Schrad.)  and  tall  fescue  (Festuca
arundinacea Schreb.)  were  less  affected  by  those  changes  in
shade level[34].  In our study, the effects of location and shade
level could not be separated because the shading percentage
was different for each location. Therefore, we could not verify
the  effects  of  those  different  shade  levels  on  seashore
paspalum performance. However, this was not an objective of
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Fig.  3    Multi-trait  principal  component  analysis  using  the  predicted  values  of  single-location  analysis  from  seashore  paspalum  shade  field
trials  evaluated for  canopy height  (CH),  dark green color  index (DGCI),  percent  living ground cover  (%GC),  and turf  quality  (TQ)  in  Citra  (FL),
Raleigh (NC) and Tifton (GA).
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this  study.  Meanwhile,  it  was  possible  to  identify  superior
genotypes and verify some parameters under shade.

The  heritability  estimates  and  significances  of  genetic
variances obtained at Citra suggest that this site was the best
location  to  discriminate  among  genotypes,  whereas  Raleigh
was  the  worst.  Raleigh  is  located  in  the  transitional  climatic
zone of the US (USDA plant hardiness zone 7), whereas Tifton
and Citra are at lower latitudes (USDA plant hardiness zones 8
and  9,  respectively)  and  are  more  suitable  for  warm-season
turfgrasses.  Therefore,  weather  factors  might  have  affected
the performance of the seashore paspalum breeding lines at
Raleigh.  In  addition,  in  perennial  crops,  the  number  of
measures  on  an  individual  influence  the  efficiency  of
predicting  its  genotypic  value,  which  can  be  verified  by  the
repeatability coefficient[35]. In our study, the higher number of
measurements  collected  at  Citra  might  have  improved
estimation  of  those  parameters.  However,  studies  of  the
number  on  measures  needed  to  select  superior  genotypes
with  a  satisfactory  level  of  confidence  in  turfgrass  are  not
available at this time.

Estimates  of  genetic  correlation  are  useful  to  understand
the relation between traits and ultimately to perform indirect
selection. To estimate correlation, it is important that there is
genetic variation in both traits since correlation quantifies the
linear  association between them.  In  our  study,  only  %GC-CH
at  Citra  and  DGCI-CH  at  Tifton  presented  significant  genetic
variance  for  both  traits  and  showed  high  correlation
estimates,  positive  and  negative,  respectively.  In  addition,

correlation  for  %GC-CH  and  DGCI-CH  were  not  consistent
across locations, the estimates were low for %GC-CH at Tifton
and  DGCI-CH  at  Citra,  where  all  these  traits  presented  also
significant  genetic  variance.  Unlike  our  study,  Leinauer  et
al.[36] observed a higher coefficient of determination between
DGCI  and  %GC  (0.78)  in  seashore  paspalum.  The  improve-
ment of any species for multiple traits is  a challenge in plant
breeding,  mainly  when  the  traits  are  highly  negatively
correlated,  because  the  goal  usually  is  to  get  a  cultivar  with
superior  performance  across  those  traits.  In  turfgrass,  it  is
desirable  that  genotypes  present  high TQ,  good %GC,  lower
CH and green color in any environment. However, our results
suggested  that  all  traits  evaluated  are  weakly  correlated,
making  it  possible  to  identify  superior  genotypes  for  all
evaluated traits.

A  joint  analysis  could  not  be  performed  in  this  study
because the evaluations at Citra started one year later and the
shade level was not the same across locations. However, in all
locations,  we  were  able  to  identify  breeding  lines  with
superior  performance  for  all  traits  for  which  the  genetic
variance  was  significant.  Furthermore,  breeding line  UGP198
ranked  high  across  locations  because  of  its  superior
performance  for  CH  and  DGCI  at  Citra  and  Tifton,  and  TQ  at
Raleigh. The genotypes evaluated in our study were selected
from  a  breeding  nursery  evaluated  for  two  years  at  seven
locations:  Citra  (FL),  College  Station  and  Dallas  (TX),  Griffin
and  Tifton  (GA),  Stillwater  (OK),  and  Jackson  Springs  (NC)[5].
This  evaluation  was  possible  due  to  a  partnership  between

1.5
Citra Raleigh Tifton

1.0
0.5

−0.5
0

1.0
0.5

−0.5
−1.0

Entries

0

0.5

0

0.01

−0.01

0

B
LU

Ps

%
G

C
D

G
C

I
C

H
TQ

Type

Check

Experimental

Se
aS

ta
r

31
.1

5-
2

SR
20

14
-1

E
SR

31
-1

5-
14

SR
31

-1
5-

15
U

G
P3

U
G

P7
3

U
G

P1
13

U
G

P1
21

U
G

P1
44

U
G

P1
45

U
G

P1
71

U
G

P1
82

U
G

P1
98

U
G

P2
28

U
G

P2
32

U
G

P2
50

U
G

P2
51

U
G

P2
52

U
G

P2
58

U
G

P2
69

Se
aD

w
ar

f

Se
aS

ta
r

31
.1

5-
2

SR
20

14
-1

E
SR

31
-1

5-
14

SR
31

-1
5-

15
U

G
P3

U
G

P7
3

U
G

P1
13

U
G

P1
21

U
G

P1
44

U
G

P1
45

U
G

P1
71

U
G

P1
82

U
G

P1
98

U
G

P2
28

U
G

P2
32

U
G

P2
50

U
G

P2
51

U
G

P2
52

U
G

P2
58

U
G

P2
69

Se
aD

w
ar

f

Se
aS

ta
r

31
.1

5-
2

SR
20

14
-1

E
SR

31
-1

5-
14

SR
31

-1
5-

15
U

G
P3

U
G

P7
3

U
G

P1
13

U
G

P1
21

U
G

P1
44

U
G

P1
45

U
G

P1
71

U
G

P1
82

U
G

P1
98

U
G

P2
28

U
G

P2
32

U
G

P2
50

U
G

P2
51

U
G

P2
52

U
G

P2
58

U
G

P2
69

Se
aD

w
ar

f

 
Fig. 4    Entries Best Linear Unbiased Predictors (BLUPs) of seashore paspalum shade trials evaluated for canopy height (CH), dark green color
index (DGCI),  percent  living ground cover  (%GC),  and turf  quality  (TQ)  in  Citra  (FL),  Raleigh (NC)  and Tifton (GA).  DGCI  was not  evaluated at
Raleigh,  whereas  the  BLUPs  of  %GC  at  Raleigh  and  Tifton,  and  TQ  at  Tifton  were  close  to  zero.  *  Entry  studentized  Best  Linear  Unbiased
Predictors significant at 5% probability by t-Student test.
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five  different  breeding programs (NCSU,  UF,  UGA,  Oklahoma
State University and Texas A&M University System) across the
southeastern  United  States  that  allowed  participating
breeders to screen their breeding lines in a greater number of
environments.  The  shade  tolerant  lines  identified  here,  like
UGP198,  will  be  tested  for  drought  resistance,  salinity
tolerance,  and  turf  quality  among  other  traits  of  interest  in
those  evaluations.  Although  UGP198  will  require  further
evaluation  for  potential  commercial  release,  it  provides  a
valuable  genetic  resource  for  paspalum  breeding  programs
wishing  to  improve  shade  tolerance.  The  observed  genetic
variability  in  this  research  justifies  continued  efforts  to
identify  paspalum  lines  with  improved  shade  tolerance.
Future  research  should  focus  on  improving  shade  tolerance
screening  techniques  to  reduce  GEI  and  to  improve  the
selection  efficiency  in  breeding  for  this  trait  in  warm  season
grasses. 

MATERIALS AND METHODS
 

Field trial and crop management
Field  trials  were  performed from 2015 to  2019 at  research

facilities  from  three  partnering  universities:  Citra,  FL
(University  of  Florida,  UF);  Tifton,  GA  (University  of  Georgia,
UGA);  and  Raleigh,  NC  (North  Carolina  State  University,
NCSU). For guaranteed shade in these trials, shade structures
were built using a poly-fiber black shade cloth of 60% neutral
density at Citra, 63% at Raleigh and 73% at Tifton. The shade
cover at Citra is in place year-round; therefore, the shade was
present  at  the  time  of  planting  and  for  the  duration  of  the
study.  The  entire  structure  is  20.1  ×  45.7  ×  2.7  m  pole  and
cable  shade  structure  (Long's  Greenhouse  Enterprise,  Inc,
Jacksonville,  FL)  installed  at  the  Plant  Science  Research  and
Education  Unit  (PSREU,  Lat: 29.4086096°,  Long:
−82.1711333°).  The  poles  are  on  3.4  m  centers  on  the  ends
and 8.8 m centers on the sides (angled at 70 degrees), with six
poles within the interior of the structure. The north half of the
structure  contains  the  60%  polyfiber  black  shade  cloth  used
for  the  study.  The  shade  cloth  was  2.7  m  above  the  soil
surface  and  also  covered  the  sides  of  the  structure  (Long's
Greenhouse  Enterprise,  Inc,  Jacksonville,  FL).  In  Raleigh,  the
trial  was  conducted  at  Lake  Wheeler  Turfgrass  Field
Laboratory (Lat: 35.7380556°, Long: −78.6788889°). The shade
cloth was installed, after planting, by connecting it to a 29.3 ×
29.3  ×  2.7  m  pole  and  cable  shade  structure  (Long's
Greenhouse Enterprise,  Inc,  Jacksonville,  FL)  surrounding the
plots, and the shade fabric was removed in late fall in order to
simulate  deciduous  tree  leaf  drop  in  autumn.  In  Tifton,  the
trial  conducted  at  Coastal  Plain  Experiment  Station  (Lat:
31.4779792°,  Long:  −83.5299572°),  the  73%  shade  cloth  was
fastened to a permanent 20.1 × 8.2 × 4.0 m A-frame structure
with Wiggle Wire® (Poly-Tex, Castle Rock, MN) after planting,
and removed each fall in a smilar fashion to the Raleigh shade
structure.

Twenty  breeding  lines  from  the  UGA  seashore  paspalum
breeding  program  and  two  commercial  checks,  'SDX-1'
(SeaDwarfTM)[37] and 'UGA-31' (SeaStar®)[38], were evaluated in
this study. These lines were selected from a breeding nursery
evaluated  for  drought  tolerance  for  two  years  at  seven

locations:  Citra  (FL),  College  Station  and  Dallas  (TX),  Griffin
and  Tifton  (GA),  Stillwater  (OK),  and  Jackson  Springs  (NC)[5].
Each  trial  was  arranged  in  a  randomized  complete-block
design  with  three  replications  at  Citra  and  Tifton,  and  two
replications  at  Raleigh.  The  trials  were  established  in  the
spring of  2015 at  Raleigh and Tifton,  and 2016 at  Citra using
one 10.2 × 10.2 cm plug transplanted in 1.2 × 1.2 m plots with
0.3 m alleys in between. Management practices varied slightly
across  locations  based  on  each  location's  recommendations
for seashore paspalum management[39,40]. Overall, plots were
mowed weekly at 5 cm. Nitrogen (N) was applied at a rate of
146, 196 and 245 kg N/ha per year in Tifton, Citra and Raleigh,
respectively, and split into three, four and six applications per
year,  respectively.  Other  nutrients  were  applied  as  needed
based on soil sampling at each location and following fertility
management  recommendations  for  each  state[39,40].  Weed
management was performed using chemical and mechanical
control as needed in all locations. Plots were irrigated (12−26
mm)  weekly  (more  frequently  if  needed)  only  during  the
establishment year in all locations. 

Phenotypic data
The  response  variables  evaluated  were  percent  living

ground  cover  (%GC),  dark  green  color  index  (DGCI),  canopy
height  (CH)  and  turfgrass  quality  (TQ).  Both  %GC  and  DGCI
were evaluated using digital  image analysis[41] taken inside a
61  L  ×  52  W  ×  56  H  cm  light  box  fitted  with  four  9-watt
compact  fluorescent  light  bulbs  (TCP  5800965K,  TruStart).
Then,  images  were  batch  analyzed  using  the  software
SigmaScan[42].  Canopy  height  was  measured  using  a
graduated  ruler  (cm).  Turfgrass  quality  was  visually  rated
using  a  1−9  scale  as  described  by  National  Turfgrass
Evaluation Program[43]. A rating of 9 indicated outstanding or
ideal turfgrass quality, and 1 reflected very poor or dead turf.
A  TQ  rating  equal  to  or  greater  than  6  was  generally
considered as acceptable TQ[44]. Similarly, a rating of less than
6 was considered unacceptable.

Data  collection  was  performed  for  three  years  at  all
locations. However, the planting date was not the same in all
locations. Therefore, initiation of data collection and number
of  repeated  measurements  differed  among  locations  and
details on this are presented in Supplemental Table 1. 

Statistical analysis
Data  were  analyzed  using  the  ASReml-R  package  v.4[45] in

the  R  environment[46].  The  mixed  model  approach  was
performed  with  variance  components  estimation  using  the
residual  maximum likelihood (REML),  tests  of  random effects
variances  by  likelihood  ratio  test  (LRT)  and  fixed  effects  by
Wald test[47].

For  each  location  and  trait,  except  for  TQ  at  Citra,  single-
location-repeated-measures  analysis  was  performed  using
the model:

ȳ = µ1+X1b+X2m+Z1g+ e (1)

g ∼ NMV (0,G⊗ I)
e ∼ NMV (0,R⊗ I)

where, y is  the  vector  of  phenotypic  values; μ is  the  overall
mean; X and Z are the incidence matrices for fixed and random
effects, respectively; b is the fixed vector of block effects; m is the
fixed vector of measure effects; g is the random vector of entries
effects  with ;  and e is  the  random  vector  of
errors  with . R is  the  covariance  matrix  of
residuals, G is the genetic covariance matrix, 1 is a vector of ones
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⊗
and I is  an  identity  matrix  of  its  proper  size.  The  Kronecker
product is denoted by .

In Citra, the trial was evaluated once for TQ (Supplemental
Table  1).  Thus,  the  single-location  analysis  was  performed
using the model:

ȳ = µ1+X1b+Z1g+ e (2)

g ∼ MVN(0,σ2
gI)

σ2
g

e ∼ MVN(0,σ2
e I)

σ2
e

where, y is  the  vector  of  phenotypic  values; μ is  the  overall
mean; X and Z are the incidence matrices for fixed and random
effects, respectively; b is the fixed vector of block effects; g is the
random  vector  of  entries  effects  with ,  where

 is  the  variance  component  of  the  entries;  and e is  the
random vector of residual effects with , where

 is  the  variance  component  of  the  residuals. 1 is  a  vector  of
ones and I is an identity matrix of its proper size.

The  modeling  of  the  residual  (R)  and  genetic  (G)
variance/covariance  matrices  was  performed  for  each  trait
and  location  in  Eq.  [1],  except  for  TQ  at  Citra.  The  change  in
matrix  structure  was  done  sequentially  by  increasing  their
complexity  from CS (simplest  structure)  to  unstructured (US)
(most  complex)[48].  First,  the  best  structure  for  R  was
identified, and then for G. The best structure for R and G was
indicated by the lower Bayesian Information criterion (BIC) as
proposed by Schwarz[49]. Then, the LRT test was used to verify
significance of the most complex structure for each matrix, R
and G, in the fitted model.

rg =
σ2

g

σ2
g+σ

2
i

σ2
g

σ2
i

1−
v̄BLUP
∆

2σ2
g

v̄BLUP
∆

The  Spearman  correlation  between  locations  was
estimated with the package Agricolae[50] in R, using predicted
values of the entries obtained from single trial analyses. Type-
B  genetic  correlations  were  calculated  using  the  estimator

 for  Eq.  (1),  where  is  the variance component

of  the  entries  and  is  the  variance  component of  the
entries-by-measures  interaction.  Generalized  measures  of
heritability, proposed by Cullis et al.[51], were estimated using

the  standard  estimator H2 =  for  Eq.  (1)  and  Eq.  (2),

where  is  the mean variance of  the difference between
two  Best  Linear  Unbiased  Predictions  (BLUPs)  for  the
genotypic effect.

t−BLUP =
BLUP

SE

Principal component analyses (PCA) were carried out using
predicted  values  of  entries  for  each  trait  in  Eq.  (1)  and  (2),
followed  by  the  construction  of biplots of  the  first  two
principal  components.  The  R  package stats[46] was  used  to
perform  these  analyses,  and  the  packages ggfortify[52] and
ggplot2[53] were  used  to  construct  biplots.  The  studentized
BLUP  (t-BLUP)  was  estimated  based  on  the  expression

,  where  BLUP  is  the  prediction  for  each

hybrid and SE is the standard error of the respective BLUP[54].
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