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Abstract
The herbaceous peony (Paeonia lactiflora Pall.) is considered to be a highly valued cut flower plant. It has large flower with rich colors. However,

there has been little or no research into the genes related to its flower development. In this study, we used the Illumina HiSeq platform to analyze

the RNA-Seq comparative transcriptome of the P. lactiflora 'Dafugui' in three different flowering periods. Nine cDNA libraries were established,

from which 92.53 Gb data with 81,788 unigenes were obtained. We screened the genes related to P. lactiflora flowering, isolated and cloned the

PlFT gene related to flowering. The total length of the PlFT gene was 592 bp, which had a complete open reading frame of 522 bp and encoded

173 amino acids. The accession number of the PlFT gene is MT249229. To test the role of PlFT, we constructed an expression vector for genetic

transformation. Its expression in Arabidposis mutant indicated that PlFT was involved in the flowering of P. lactiflora. This is the first transcriptome

analysis of flower development in P. lactiflora. Our results provide some fundamental information for further analyzing the molecular mechanism

underlying flower development of P. lactiflora.
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INTRODUCTION

The  herbaceous  peony  (Paeonia  lactiflora Pall.),  a  member
of the family Paeoniaceae, is a traditional herb flowering plant
and has a long history of cultivation in China. It used to grow
in  the  Imperial  Palace  Garden  and  is  known  as  the  'Prime-
Minister  of  flowers'[1].  The P.  lactiflora flower  is  elegant  and
beautiful  with  a  high  ornamental  value.  Its  flowers  have  not
only single petal, double petal, golden pistil, crown, and other
flower  types  but  also  rich  colors,  such  as  white,  green,  pink,
and yellow. Regulation of flowering of herbaceous peony can
be  manipulated  in  protected  cultivation,  but  the  production
cost is high. P. lactiflora loses the stems and leaves in autumn
but  survives  in  winter  as  a  dormant  root  mass  as  the
herbaceous peony is  deciduous[2].  To break the dormancy of
buds  in  spring,  it  needs  a  long  time  of  low  temperature
during  dormancy  to  meet  the  winter-cold  requirements[3−5].
In  addition  to  the  low  temperature,  application  of  GA3 can
promote flowering[6]. For the early flowering cultivar Dafugui,
4−5  axillary  buds  on  the  top  of  the  terminal  bud  developed
into a primordium shape in the overwintering state. 'Dafugui'
experiences  flower  bud  differentiation,  bract  primordium
differentiation,  petal  primordium  formation,  stamen  primor-
dium  emergence  and  development,  and  pistil  primordium
formation  from  early  September  to  April  of  the  following
year[7].  Information  on  flower  bud  differentiation  and
flowering  regulation  of  herbaceous  peony  is  helpful  to
provide the theoretical basis for promoting flowering.

Flowering  marks  the  transition  from  vegetative  growth  to

reproductive  growth,  and  the  time  of  flowering  affects  a
plants  commercial  value[8].  At  the  same  time,  regulation  of
the  flowering  period  is  also  essential  for  plant  seed  setting.
Compared  to  other  species,  the  molecular  mechanism  of
flowering  in Arabidopsis is  relatively  well  understood[9].  In
Arabidopsis, there are six response pathways including photo-
period,  vernalization,  autonomic,  temperature,  gibberellin,
and age pathway, to regulate flowering[10]. Both endogenous
and  exogenous  factors  determine  the  flowering  time  of
plants.  Endogenous  factors  are  mainly  related  to  the  genes
that  regulate  flowering  transformation.  For  example, FT[11],
FLC[12], LFY[13] and SOC1[14] are  called  flower  induction
switches.  Among them,  FT  protein  is  a  globular  protein  with
175  amino  acids,  both  mRNA  and  FT  protein  can  regulate
flowering. FT gene is regarded as a florigen gene[15],  which is
conservative.  It  was  previously  reported  that  the  FT  protein
could  be  transported  between  cells  through  phloem  and
transported  to  the  apical  meristem,  inducing  plant
flowering[16].  It  does not work alone, but interacts with other
proteins to regulate flowering.

Currently, FT and  its  homologous  genes  are  found  to
promote flowering in winter wheat,  barley[17],  rubber tree[18],
rice[19,20],  vanda  hybrid[21],  chrysanthemums[22] and  other
plants.  It  is  reported  that  the LFT1 gene  of Lilium was  most
homologous to the AtFT gene and showed peak expression in
shoot apices, which promotes flowering in Arabidopsis[23]. The
regulation  of  flowering  by FT is  also  influenced  by
photoperiod  induction  and  other  proteins.  Recently,  Jing  et
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al.  found  that PKL could  interact  with CO and  bind  to FT to
mediate FT response  to  photoperiod  induced  flowering  and
counteract  the  inhibitory  activity  of  PcG  protein,  resulting  in
appropriate FT expression  and  flowering  response[24]. FT has
some changes in species evolution, so not all FT homologous
genes have or only have a promotive effect. A study on onion
has  shown  that  the  up-regulation  of AcFT2 can  induce
vernalization and promote flowering,  while AcFT1 and AcFT4
are  related  to  bulb  formation[25].  In  addition, GmFT1a was
found  to  inhibit  flowering  in  soybean,  which  was  a  flower
inhibitory factor[26].

Transcriptome  sequencing  is  a  high-throughput  techno-
logy  for  analyzing  gene  sequence  data  and  can  be  divided
into  three  categories:  synthetic  sequencing,  solid-state
sequencing,  and  single-molecule  sequencing[27].  Illumina
platform  is  the  most  widely  used  platform  based  on  data
quality,  quantity  and  cost[28].  As  an  efficient  and  high-
throughput method for functional gene mining and pathway
analysis, transcriptome sequencing was introduced into many
studies  of  horticultural  research.  There  were  many  types  of
research on mining flowering genes through transcriptome in
some  species  including  sweet  potato[29],  bamboo[30,31],
Lagerstroemia  indica[32], Ipomoea  nil[33] and Eichhornia
paniculate[34].  For  example,  in  Singh  &  Jain's  previous
research,  the  RNA-seq  of  various  stages  of  flower
development  and  few  vegetative  tissues  in  chickpea  found

differentially  expressed  genes  related  to  various  biological
processes  and  molecular  functions  during  flowering[35].
Zhang  et  al.  reported  that  110  citrus  flowering-time  genes
homologous  with  known  elements  of  flowering-time
pathways  were  identified  by  sequencing  and  bioinformatics
analysis  in Poncirus  trifoliata (L.)  Raf[36].  High  throughput
transcriptome  sequencing  plays  an  important  role  in  the
study of flowering regulation.

In  this  study,  transcriptome  sequencing  technology  was
used  to  analyze  different  gene  expression  during  the
flowering  of P.  lactiflora and  to  identify  those  involved  in
regulation  of  flower  development.  An  important  gene, PlFT
was  isolated  and  cloned  for  genetic  transformation  in
Arabidopsis. Its expression in relation to flower development
in Arabidopsis indicated that PlFT could play an important role
in regulating flowering in P. lactiflora. 

RESULTS
 

Sequencing read filtering and de novo assembly
Nine  cDNA  libraries  (three  biological  repeats)  were

constructed  by  collecting  samples  from  T1,  T2  and  T3  to
elucidate P.  lactiflora 'Dafugui'  flowering  mechanism
(PRJNA723469).  T1  is  the  critical  period  of  flower  bud
differentiation, T2 is the period of flower bud morphogenesis,
and  T3  is  the  period  of  flower  opening  (Fig.  1a).  A  total  of
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Fig. 1    Transcriptome sequencing of 'Dafugui'.  (a) Materials of 'Dafugui' in three periods. T1, critical period of flower bud differentiation; T2,
flower bud morphogenesis; T3, peak flowering. (b) Unigene length distribution.
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92.53  GB  of  data  were  obtained  by  the  Illumina  Hiseq
platform.  After  assembling  the  original  data  and  removing
the  redundancy  of  low  quality,  joint  pollution,  and  high
content  of  unknown  base  N  in  the  original  data,  the  filtered
reads  quality  statistics  were  obtained,  as  shown  in
Supplemental Table 1. After filtering, the percentage of reads
was > 92.6%, and the percentage of Q20 (%) > 97.9%. Overall,
the  percentage  of  bases  with  low  quality  was  lower,
indicating  that  the  sequencing  quality  was  sound.  Since P.
lactiflora has no reference genome, it was necessary to splice
the  clean  reads  to  obtain  the  reference  sequences  for
subsequent  analysis;  the  results  are  shown  in Supplemental
Table  2.  A  total  of  81,788 unigenes  containing 93,770,651 nt
were obtained, with an average length of 1,146 nt. N50, N70,
and  N90  were  1,780  bp,  1,193  bp  and  520  bp,  respectively.
Fig.  1b shows  the  length  distribution  statistics  of  unigenes.
The sequence length of unigenes ranged from 200 nt to 3,000
nt.  With  the  increase  of  sequence  size,  the  number  of
unigenes  gradually  decreased,  but  there  was  no  apparent
separation.  All  the  above  results  indicated  that  RNA
sequencing has good continuity and high quality. 

Gene functional annotation
The assembled unigenes were compared to seven function

databases  (KEGG,  GO,  NR,  NT,  SwissProt,  Pfam  and  KOG)  for
annotation  to  understand  the  function  information.  Finally,
52,323  (NR:  63.97%),  35,949  (NT:  43.95%),  39,639  (SwissProt:
48.47%), 43,118 (KOG: 52.72%), 41952 (KEGG: 51.29%), 40,116

(GO:  49.05%)  and  40,206  (Pfam:  49.16%)  unigenes  were
annotated. Fig. 2a shows the Venn diagram of the number of
unigenes annotated by KEGG, GO, NR, Swissprot, and KOG.

The corresponding functional annotation was obtained by
comparing  unigenes  sequences  with  the  NR  database.
According  to  the  results  of  NR  functional  annotation,  the
proportion  of  different  species  in  unigenes  annotation  was
counted, and the species distribution map was drawn (Fig. 2b).
The unigenes of P. lactiflora 'Dafugui' were similar to those of
five  plants, Vitis  vinifera (21.41%), Quercus  suber (8.89%),
Actinidia (4.09%), Juglans regia (3.91%) and Nelumbo nucifera
(2.79%).

Unigenes were annotated into the KOG database and were
classified into 25 functional processes (Fig. 2c). Among them,
9,048  unigenes  were  compared  to  the  'general  function
prediction only', followed by 4,598 unigenes to the variety of
'signal  transmission mechanisms',  and 4,048 unigenes  to  the
category  of  'posttranslational  modification,  protein  turnover,
and chaperones'. 

Analysis of differentially expressed genes for the
development of herbaceous peony 'Dafugui' flowers

The FPKM values of unigenes from different stages (T1, T2,
and  T3)  were  compared.  The  DEGs  were  screened  to  obtain
the  flowering-related  genes  of P.  lactiflora.  The  differences
between the T1, T2 and T3 groups are shown in Supplemental
Fig. 1. The number of differentially expressed genes is shown
in Supplemental  Table  3.  Compared  with  T1  and  T2,  there
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Fig.  2    Gene  functional  annotation.  (a)  Venn  diagram  of  the  number  of  unigenes  annotated  in  different  public  databases.  (b)  Species
distribution of NR annotation. (c) Functional classification of KOG annotation. The x-axis represents the corresponding number of Unigene, the
y-axis represents the KOG function classification name.
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were  28,075  DEGs,  including  19,821  up-regulated  and  8,254
down-regulated.  Compared  with  T1  and  T3,  there  were
40,666  DEGs,  including  22,171  up-regulated  and  18,495
down-regulated. There were 37,230 DEGs between T2 and T3,
of which 15,064 up-regulated and 22,166 down-regulated. 

GO and KEGG Pathway analysis of DEGs
All  DEGs  were  annotated  by  GO  and  were  classified  into

three  functional  categories:  molecular  function,  cellular
component,  and  biological  process  (Fig.  3a).  Moreover,  all
DEGs were also annotated by the KEGG pathway. The top 20
pathways are shown in Fig. 3b. During the three periods, five
metabolic  pathways  were  enriched,  including  'circadian
rhythm-plant',  'carotenoid  biosynthesis',  'flavonoid
biosynthesis', 'isoflavonoid biosynthesis' and 'MAPK signaling
pathway'.

To  explore  the  key  genes  of  flowering  regulation  during
flower  bud  differentiation  of P.  lactiflora 'Dafugui'  and  the
molecular mechanism of flowering regulation, the DEGs in T1
vs T2, T1 vs T3, and T2 vs T3 were analyzed, and the up-down
relationship  was  marked  (Table  1).  Twenty  three  DEGs  were
screened and annotated by KEGG,  including CHE, PHYB, LHY,
CO, PRR5, PRR7, FKF1, CDF1, PHYA, PAP1, HY5, TOC1, ELF3, GI,
FT, CRY1, CRY2, ZTL, SPA1, FLC, FUL, AP1 and SOC1, which were
related to flower development. 

Verification of transcriptome reliability by qRT-PCR
qRT-PCR was used to verify  the reliability  of  transcriptome

sequencing.  Nine  DEGs  related  to  flowering  were  randomly

selected,  and  the  samples  of  T1,  T2  and  T3  were  used  to
analyze their expression. The nine DEGs were TCP21, CHE, CO,
PRR5, PAP1, MYB75, HY5, ELF3, GI, FT and CRY1.  As  shown  in
Fig. 4, the expression changes of nine random genes of three
periods  were  highly  consistent  with  the  transcriptome
sequencing  results,  indicating  that  the  transcriptome
sequencing results obtained were accurate and reliable. 

Sequence analysis of one flowering-related gene in
Paeonia lactiflora

Florigen (FT), known as a flowering hormone, plays a crucial
role in the flowering gene network. FT protein is synthesized
in  plant  leaves,  transported  over  a  long  distance,  and
accumulated  at  the  shoot  apical  meristerm  (SAM)  to  trigger
the  process  of  flower  bud  differentiation.  In  our
transcriptomic  data, PlFT gene  expression  was  significantly
different  in  flower  developmental  stages,  which  might
indicate that it could play an important role in the formation
of peony flowers.  Therefore,  we isolated PlFT and carried out
further functional research. The total  length of the PlFT gene
was 592 bp, whose complete open reading frame was 522 bp
and encoded 173 amino acids.  The amino acid sequences of
PlFT were  compared  with  those  of Paeonia  suffruticosa, Rosa
chinensis, Malus domestica, and Petunia x hybrida by DNAMAN
software  (Fig.  5a).  The  amino  acid  sequences  of PlFT were
99%, 93%, 93%, and 89% similar to those of PsFT (AHM25242.1),
RcFT (XP_024189593.1), MdFT (NP_001280810.1)  and PhFT
(AZL87173.1),  respectively.  The  similarity  between FT and
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Fig. 3    GO and KEGG Pathway analysis of DEGs. (a) Functional distribution of DEGs annotated GO. The x-axis represents the number of genes
annotated GO and the y-axis represents the functional distribution of GO. (b) Bubble diagram of enrichment of DEGs KEGG pathway. The x-axis
is  enrichment  ratio,  the y-axis  is  KEGG Pathway,  the bubble  size  indicates  the number  of  genes  annotated on one KEGG pathway,  the color
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Table 1.    Analysis of main DEGs for KEGG pathway related with flowering of 'Dafugui' samples in different periods.

Gene ID Entry Name log2(T2/T1) log2(T3/T1) log2(T3/T2) T1 vs T2 T1 vs T3 T2 vs T3

CL1090.Contig1_All K16221 TCP21, CHE −1.22 −1.88 down down
CL1090.Contig2_All −1.70 −2.21 down down
Unigene12923_All −3.09 −2.39 down down
Unigene15030_All 2.53 2.33 up up
Unigene17026_All −1.13 down
Unigene19482_All −3.00 −3.60 down down
Unigene6346_All 2.27 1.44 up up

CL1148.Contig1_All K12121 PHYB 4.43 11.10 6.68 up up up
CL1148.Contig4_All 1.58 7.06 5.48 up up up

CL1516.Contig10_All 2.70 7.40 4.70 up up up
CL1516.Contig11_All 4.12 8.90 4.78 up up up
CL1516.Contig2_All 2.97 1.25 −1.72 up up down
CL1516.Contig3_All 5.19 9.32 4.12 up up up
CL1516.Contig4_All 6.56 6.69 up up
CL1516.Contig5_All −2.89 −6.12 down down
CL1516.Contig6_All −8.14 −8.16 down down
CL1516.Contig7_All −3.44 5.73 9.17 down up up
CL1516.Contig8_All 1.11 −1.54 −2.65 up down down
CL1516.Contig9_All 1.84 5.98 4.13 up up up
CL175.Contig2_All 2.40 2.36 up up
CL175.Contig4_All 2.26 1.91 up up

CL5438.Contig1_All −1.79 −8.85 −7.07 down down down
CL6053.Contig1_All 1.19 up
CL6053.Contig2_All 2.58 4.17 1.59 up up up
CL6053.Contig3_All −1.34 1.94 3.28 down up up
CL6068.Contig1_All 4.60 4.51 up up
CL6900.Contig1_All 1.30 −7.36 −8.65 up down down
CL6900.Contig2_All 1.09 1.36 up up
CL7074.Contig1_All 8.14 8.04 up up
CL7690.Contig3_All −1.93 −2.80 down down
CL7690.Contig4_All 1.01 −7.93 −8.94 up down down
CL7690.Contig5_All 1.54 up
Unigene12459_All 1.26 −1.04 up down
Unigene12460_All 6.55 6.45 up up
Unigene12461_All 3.70 8.02 4.32 up up up
Unigene1351_All 9.45 9.35 up up

Unigene15547_All 9.58 9.48 up up
Unigene24958_All −4.59 2.60 7.20 down up up
Unigene25706_All 8.96 7.86 up up
Unigene39640_All −1.07 down
Unigene6288_All 1.24 up
Unigene6289_All 1.29 up

CL1150.Contig3_All K12133 LHY 3.80 3.14 up up
CL1150.Contig4_All 3.98 4.05 up up
CL1150.Contig5_All 6.15 6.25 up up
CL1150.Contig7_All 4.35 4.23 up up
CL1184.Contig1_All 2.71 −2.01 up down
CL5076.Contig1_All −1.34 down
CL5076.Contig3_All −1.62 down
CL5076.Contig4_All −2.16 −7.47 −5.31 down down down
CL5076.Contig5_All −1.21 down
CL8141.Contig1_All −1.09 2.51 3.60 down up up
CL8141.Contig2_All 2.33 2.79 up up
CL1267.Contig1_All K12135 CO 1.16 2.88 1.72 up up up
CL1672.Contig2_All 1.13 up
CL3591.Contig1_All 1.59 −1.09 −2.68 up down down
CL3591.Contig2_All 2.67 −2.06 −4.73 up down down
CL3591.Contig3_All 2.35 −6.78 −9.13 up down down
CL3591.Contig4_All 3.10 −1.09 −4.19 up down down
CL3591.Contig5_All −1.60 −2.47 down down
CL409.Contig3_All −1.11 −1.56 down down
CL409.Contig4_All −1.39 down

(to be continued)
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Table 1.    (continued)
 

Gene ID Entry Name log2(T2/T1) log2(T3/T1) log2(T3/T2) T1 vs T2 T1 vs T3 T2 vs T3

CL409.Contig5_All 1.21 −1.52 up down
CL4357.Contig1_All 7.30 8.69 1.38 up up up
CL4357.Contig2_All 4.39 3.23 −1.16 up up down
CL4357.Contig3_All 9.23 11.51 2.28 up up up
CL4357.Contig4_All 2.96 4.33 1.37 up up up
CL4357.Contig5_All 5.08 1.55 −3.52 up up down
CL6692.Contig3_All 2.25 −4.50 −6.75 up down down
CL7718.Contig1_All 1.65 −1.49 −3.14 up down down
CL7718.Contig2_All 1.44 −1.29 up down
CL7917.Contig1_All −1.38 down
CL7917.Contig2_All −1.28 −1.01 down down
CL7917.Contig3_All −1.75 −1.79 down down
CL7932.Contig1_All 1.92 2.14 up up
CL7932.Contig2_All 1.95 2.86 up up
Unigene11310_All 2.14 −2.24 up down
Unigene1286_All 1.84 1.25 up up

Unigene14242_All 3.42 7.71 4.29 up up up
Unigene17669_All 6.48 4.58 −1.90 up up down
Unigene32926_All 4.14 −5.07 up down

Unigene410_All 5.11 5.13 up up
Unigene496_All 2.47 −2.83 up down

Unigene9300_All 1.86 7.00 5.14 up up up
CL3891.Contig1_All K12130 PRR5 7.17 4.47 −2.70 up up down
CL3891.Contig2_All 3.36 −7.07 up down
CL3891.Contig3_All 2.69 −2.64 up down
CL3891.Contig4_All 2.56 −2.46 up down
CL6193.Contig1_All 4.75 3.70 −1.05 up up down
CL6193.Contig2_All 4.31 2.52 −1.78 up up down

Unigene8183_All 2.55 −2.91 up down
Unigene8184_All 3.33 −2.79 up down

CL4229.Contig1_All K12129 PRR7 1.21 2.86 1.65 up up up
CL4229.Contig10_All 1.44 3.38 1.94 up up up
CL4229.Contig2_All 1.59 3.96 2.38 up up up
CL4229.Contig3_All 1.46 2.59 1.13 up up up
CL4229.Contig4_All 1.83 1.78 up up
CL4229.Contig5_All 4.09 4.59 up up
CL4229.Contig6_All 3.02 −6.05 −9.07 up down down
CL4229.Contig7_All 3.20 6.69 3.48 up up up
CL4229.Contig8_All 2.51 2.28 up up
CL4229.Contig9_All 6.17 7.13 up up
CL7872.Contig1_All 1.32 2.56 1.24 up up up
CL7872.Contig2_All 2.34 3.67 1.33 up up up

Unigene6980_All 4.16 2.26 −1.90 up up down
CL4436.Contig1_All K12116 FKF1 −1.34 −1.58 down down
CL4436.Contig2_All 1.13 −1.20 up down
CL4719.Contig1_All K16222 CDF1 −1.27 1.27 down up
CL5753.Contig1_All 3.95 2.85 down down
CL5753.Contig2_All −2.77 −3.64 down down down
CL5837.Contig1_All −1.83 −2.67 up up up
CL5837.Contig2_All −3.49 −5.83 up up up
CL6631.Contig2_All −3.77 −3.58 down down
CL8648.Contig1_All −1.90 down down down
CL8648.Contig2_All −1.36 down down down
Unigene10801_All 10.91 −7.84 up up
Unigene11044_All −2.71 −8.05 −5.34 up
Unigene12006_All 7.60 5.50 up down
Unigene12046_All −2.30 −1.32 up up up
Unigene12573_All −2.04 −4.46 −2.43 down down up
Unigene14940_All 7.05 10.78 3.73 up down
Unigene14950_All 7.24 13.54 6.30 down down down

Unigene695_All −2.86 −2.83 up up

(to be continued)
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Table 1.    (continued)
 

Gene ID Entry Name log2(T2/T1) log2(T3/T1) log2(T3/T2) T1 vs T2 T1 vs T3 T2 vs T3

Unigene972_All −2.18 −6.64 −4.47 up up
Unigene15046_All −2.45 −5.86 −3.41 up down

CL5158.Contig1_All K12120 PHYA 1.44 1.08 up up
CL9769.Contig1_All 1.65 down down
CL9769.Contig2_All 1.95 −1.86 down down
CL9769.Contig3_All 4.27 5.83 1.56 down down
Unigene14810_All −3.09 −1.66 1.43 down down
Unigene2317_All 2.03 −2.02 down
Unigene2317_All −3.39 −5.28 −1.89 down

CL5739.Contig1_All K16166 PAP1, MYB75 1.94 2.48 up down
CL5739.Contig3_All 1.89 1.64 down down down
Unigene15771_All 1.81 −1.74 up up

CL6391.Contig1_All K16241 HY5 3.25 2.69 up up
CL6391.Contig2_All 4.25 1.38 −2.87 up up down
CL6391.Contig3_All 5.39 −4.60 up down
CL9659.Contig1_All −1.22 −1.90 down down

Unigene6996_All 8.00 7.61 up up
CL6767.Contig1_All K12127 TOC1, APRR1 2.28 1.49 up up
CL6767.Contig2_All −1.25 −1.37 down down
CL6767.Contig3_All −2.52 −3.05 down down
CL835.Contig1_All 2.93 −2.80 −5.73 up down down
CL835.Contig2_All −3.37 −3.31 down down
CL835.Contig3_All −2.37 −1.71 down down
CL835.Contig4_All −5.89 −5.70 down down
CL835.Contig5_All 2.05 −3.30 −5.35 up down down
CL835.Contig6_All −3.41 −3.94 down down
CL835.Contig7_All 1.25 −2.26 −3.51 up down down
Unigene15499_All 6.55 1.10 −5.45 up up down

CL7407.Contig1_All K12125 ELF3 −6.46 −5.48 down down
CL8526.Contig1_All K12124 GI 1.48 −1.02 up down
CL8526.Contig2_All 2.59 −3.56 −6.16 up down down
CL8526.Contig3_All 1.65 1.11 up up
CL8526.Contig4_All 1.51 up
CL8783.Contig1_All K16223 FT 9.27 6.48 −2.78 up up down
CL8783.Contig2_All 6.12 3.64 −2.48 up up down
CL8783.Contig3_All 7.57 5.02 −2.55 up up down
Unigene18266_All −5.81 −4.83 down down
Unigene23647_All −5.49 −2.51 down down
Unigene30306_All 7.14 7.05 up up
Unigene35531_All −8.42 −8.44 down down
Unigene36039_All −3.55 −7.15 down down

Unigene235_All K12118 CRY1 5.47 4.40 −1.07 up up down
Unigene236_All 5.01 3.70 −1.31 up up down

CL926.Contig1_All K12119 CRY2 2.81 2.28 up up
CL926.Contig11_All 3.01 2.38 up up
CL926.Contig2_All 2.37 3.07 up up
CL926.Contig3_All 1.71 1.69 up up
CL926.Contig4_All 1.12 2.06 up up
CL926.Contig5_All 1.04 3.57 2.53 up up up
CL926.Contig6_All 1.22 5.43 4.20 up up up
CL926.Contig7_All 2.79 2.28 up up
CL926.Contig8_All 2.09 5.79 3.70 up up up
Unigene2881_All −1.41 1.19 2.60 down up up

Unigene21537_All K12115 ZTL 1.57 up
Unigene32913_All 1.25 up
Unigene8078_All −1.24 1.58 down up
Unigene8082_All 1.96 up
Unigene8325_All −1.95 −2.92 down down
Unigene6219_All K16240 SPA1 2.77 1.31 −1.45 up up down

CL773.Contig1_All K01184 FLC 3.09 −6.44 −9.54 up down down
CL773.Contig3_All 4.41 −4.89 −9.29 up down down

(to be continued)
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PsFT (AHM25242.1)  was  the  highest,  reaching  99%.  The
similarity between FT and PhFT (AZL87173.1) was the lowest,
reaching 89%. The PlFT gene sequence was registered in the
NCBI  database  with  the  accession  number  of  MT249229.  To
study  the  phylogenetic  relationship  between PlFT and  other
species,  the phylogenetic tree of PlFT protein and FT protein
of other species is  shown in Fig.  5b.  The results  showed that
the evolutionary relationship between PlFT and PsFT was the
closest,  followed  by VvFT and HnFT,  and  relatively  far  from
MdFT. 

Genetic transformation of PlFT gene in A. thaliana
An  overexpression  vector  carrying PlFT (pCAMBIA1301-

PlFT)  was  transformed  into Agrobacterium  tumefaciens strain
EHA105 by  the  freeze-thaw method,  which  was  transformed
into Arabidopsis mutant ft-10 by  the  floral  dip  method  as
there  is  currently  no  peony  transformation  system  available.
Mature seeds were collected and recorded as T0. The seeds of
T0  generation  were  screened  on  MS  medium  containing
hygromycin  (25  mg/L).  The  well-developed  plants  as  the
transformed T1 generation Arabidopsis (Supplemental  Fig.  2)
were  transplanted  to  the  plug  and  cultured  in  the  light
incubator.  After  flowering  and  seed  set,  the  seeds  were
collected  and  recorded  as  the  T2  generation.  The  T2
generation  was  further  seeded  on  hygromycin-resistant
medium  for  screening,  and  the  control  wild-type Col-0 and
mutant ft-10 were  transplanted  and  seeded  on  MS  medium
without  resistance.  A  total  of  35  T2  generation  transgenic
Arabidopsis with FT gene  of P.  lactiflora were  obtained.  One
complete  flowering  mutant ft-10 and  one  wild-type Col-0
Arabidopsis  thaliana were  selected  as  controls.  At  the  same
time, T2 generation PlFT transgenic plants 4,  17, and 28 lines
were chosen for GUS staining analysis (Fig. 6a). The mutant ft-
10 and wild-type Col-0 did not exhibit blue. At the same time,
the selected transgenic plants showed blue,  which indicated
that  wild-type  and  mutant  plants  did  not  contain  the  GUS
gene,  while  those  stained  with  blue  were  transgenic  plants
carrying the PlFT.

qRT-PCR  was  used  to  detect  the  expression  of  the PlFT
gene in Arabidopsis  thaliana.  The mutant ft-10 and wild-type
Col-0 plants  were  used  as  the  control  group.  Ten PlFT
transgenic ft-10 mutant Arabidopsis (3, 8, 11, 14, 18, 24, 25, 26,
27  and  33  lines)  were  randomly  selected  and  analyzed.  The
expression  levels  of  these  plants  are  shown  in Fig.  6b.  The
expression levels of the PlFT gene in ten transgenic lines were

highest,  suggesting that the PlFT gene was overexpressed in
mutant ft-10 Arabidopsis driven by ubiquitin promoter.

The  phenotypes  of  T2  generation  transgenic Arabidopsis
and  its  control  are  shown  in Fig.  7a. ft-10 was  in  the
vegetative growth stage, Col-0 was budding, while transgenic
Arabidopsis showed early flowering phenotype. The flowering
time  (Fig.  7b)  and  rosette  leaves  (Fig.  7c)  of  transgenic
Arabidopsis and the control were counted. The results showed
that  the  flowering  time  of  the  mutants ft-10 was  about  70
DAE (days after  emergence),  the number of  rosette leaves at
bolting  mainly  was  30–35.  The  flowering  time  of  wild-type
Col-0 was 57 DAE, and the number of rosette leaves at bolting
was 16–23. PlFT complemented the late flowering phenotype
of  mutant ft-10.  The  flowering  time  of  transgenic ft-10 was
about  45  DAE,  and  the  number  of  rosette  leaves  at  bolting
decreased  to  8–15.  The  difference  in  the  flowering  time
between  transgenic Arabidopsis and  control  was  significant.
The  number  of  rosette  leaves  of  mutant ft-10 was  the  most,
followed  by  wild-type Col-0,  and  transgenic Arabidopsis was
the  least.  Because  of  the  deletion  of  the FT gene,  the
flowering of mutant ft-10 was later than that of wild-type Col-
0. However, after the PlFT gene was transferred, the functional
complementation  was  obtained.  The  flowering  time  was
significantly  earlier  than  that  of  wild-type,  which  was
consistent with the statistical results of leaf disc number. 

DISCUSSION

Paeonia  lactiflora has  become  an  important  cut  flower
plant,  but  current  research  has  been  largely  focused  on
physiological  levels  of  flower  bud  differentiation,  and  there
have been no transcriptome studies on flower development.
However,  transcriptome  studies  have  been  performed  on
other  floral  plants.  For  example,  transcriptome  analysis  was
conducted  on  the  flowering  process  of  'Old  Brush'.  From
which 85,663 single genes and 1,637 differentially  expressed
genes  (DEGs)  were  obtained. FRI, FY, DRM1, ELIP, COP1, CO
and COL16 related  to  the  circadian  rhythm  or  autonomic
pathway  were  screened[37].  A  complex  genetic  network
comprising  of  several  coordinated  flowering  pathways  was
identified  which  control  the  developmental  transition  of
flowering[38].  In Arabidopsis,  more than 200 genes associated
with flowering have been identified and characterized[10,39]. In
this  study,  a  total  of  23  DEGs  were  identified  to  regulate
peony  flowering,  including CHE, PHYB, LHY, CO, PRR5, PRR7,

Table 1.    (continued)
 

Gene ID Entry Name log2(T2/T1) log2(T3/T1) log2(T3/T2) T1 vs T2 T1 vs T3 T2 vs T3

CL773.Contig4_All 4.24 −4.90 −9.14 up down down
CL773.Contig5_All 3.79 −6.37 −10.16 up down down
Unigene16702_All 3.22 −6.84 −10.07 up down down
Unigene16704_All −4.77 −5.08 down down

CL7416.Contig1_All K09264 FUL 3.39 3.44 up up
CL7416.Contig2_All 3.51 3.34 up up
Unigene18421_All 4.66 −4.95 up down
Unigene44881_All 5.31 3.57 −1.75 up up down
Unigene44883_All 4.71 −7.96 up down
Unigene7311_All K09264 AP1 7.44 12.69 5.25 up up up

CL8905.Contig1_All K09260 SOC1 2.35 −3.64 −5.99 up down down
Unigene7203_All −3.22 −7.68 −4.46 down down down
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FKF1, CDF1, PHYA, PAP1, HY5, TOC1, ELF3, GI, FT, CRY1, CRY2,
ZTL, SPA1,  FLC, FUL, AP1,  and SOC1 from  Illumina  Hiseq
platform  transcriptome  data.  These  genes  were  involved  in

various  flowering  pathways  and  regulatory  networks,
including  the  photoperiod,  vernalization,  and  aging
pathway[10,39].  This study is  the first  transcriptome analysis of
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Fig. 4    qRT-PCR validations of expression levels of DEGs.
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P.  lactiflora 'Dafugui'  at  different  flowering  stages,  which
provides  a  scientific  basis  for  further  screening  of  flowering
regulation  genes  and  for  elucidating  the  mechanism
underlying flower development of P. lactiflora.

It  is  well  known that the FT gene plays a vital  role in plant
growth  and  development,  affecting  the  flower  opening  and
morphogenesis.  Böhlenius  et  al.  found  that  the  CO/FT

regulatory module controls flowering time and the short-day-
induced  growth  cessation  and  bud  set  occurring  in  the
autumn[40].  In  tomato, SFT induced  flowering  in  day-neutral
tomato and altered flower morphology[41]. The FT orthologue
in rice, the Hd3a gene, participated in the regulation of potato
types  to  tuberize[42].  Moreover,  overexpression  of FT can
activate the H+-ATPase to open stomata in plants[43]. Because
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Fig.  5    Sequence  analysis  of PlFT.  (a)  Amino-acid  comparision  between PlFT and FT homologues  from  other  species.  (b)  Phylogenetic  tree
based  on  the  amino  acid  sequences  from PlFT and  other  species.  AHM25242.1  [Paeonia  suffruticosa];  AFU08240.1  [Populus  tomentosa];
BAP18900.1 [Fragaria × ananassa]; AUQ44109.1 [Hydrangea macrophylla]; XP_023899320.1 [Quercus suber]; XP_028086172.1 [Camellia sinensis];
AIU38062.1  [Punica  granatum];  XP_007028083.1  [Theobroma  cacao];  XP_024189593.1  [Rosa  chinensis];  AGI74990.1  [Morus  alba];
XP_021911503.1 [Carica  papaya];  ABF56526.1 [Vitis  vinifera];  NP_001280810.1 [Malus  domestica];  AZL87173.1 [Petunia  ×  hybrida];  ALA56300.1
[Eriobotrya japonica]; AJC01934.1 [Pyrus communis]; AEU08960.1 [Litchi chinensis]; CBY25181.1 [Prunus mume]; ADF32946.1 [Helianthus annuus].
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of  the  critical  role  of FT in  plants,  we  chose PlFT as  the
essential  flowering-related gene.  Our  results  proved that  the
PlFT gene played an important role in regulating flowering of
P. lactiflora.

Overexpression  of PlFT could  promote  the  flowering  of
plants,  which  is  important  for  the  development  of
Arabidopsis. It is suggested to use the FT gene to regulate the
inflorescence  of P.  lactiflora.  For  example,  overexpression  of
LsFT from  lettuce  (Lactuca  sativa L.)  can  restore  the  late
flowering  phenotype  of ft-2 mutant Arabidopsis[44].
Transgenic  cassava  plants  with MeFT1 showed  an  early
flowering phenotype compared with non-transgenic control.
qRT-PCR analysis indicated that MeFT1 triggered flowering by
regulating  downstream  flower  meristem  recognition
genes[45]. FT does not act alone but alongside environmental
and endogenous signals  that  regulate downstream genes to
promote  flowering.  Studies  found  that FT induces  the
transcription  of SWEET10,  which  encodes  a  bidirectional
sucrose  transporter,  specifically  in  the  leaf  veins.  It  changes
the metabolism of flowering plants and is  activated by long-
term  illumination.  Ectopic  expression  of SWEET10 leads  to
increased  transcription  levels  of  genes  associated  with
flowering  time  in  shoot  tips,  leading  to  early  flowering  of
plants[46].  In  the  upstream  of FT,  overexpression  of CmBBX8
regulates  genes  expression  related  to  photoperiod,  and
accelerates flowering. CmBBX8 has been confirmed to directly
target CmFTL1 and  promote  the  flowering  of  summer
chrysanthemum[47].  However,  not  all FT functions  were
promoting  flowering.  Overexpression  of LlFT and TgFT2 in
Arabidopsis led to the decrease of early flowering and rosette
leaves.  The  bulb-specific  role  of TgFT3 was  speculated
through  observation  and  phylogenetic  analysis[48].  These

results  indicate  the  complexity  of  flowering  time  regulation
and the functional diversity of the FT gene.

In  this  study,  the  upstream  and  downstream  genes  and
action sites of PlFT regulation in P. lactiflora need to be further
explored.  Because  the FT gene  is  related  to  light  and
photoperiod, its application could make plants bloom earlier
and  expand  the  geographical  scope  of  its  production.
According to relevant reports, different GmFT2a and GmFT2b
haplotypes  significantly  affect  the  diversity  of  soybean
flowering  time  at  different  latitudes[49].  The CsFT locus  is  the
primary source for cucumber to adapt to high latitude, which
provides an important perspective for flowering time control
and  latitude  adaptation  of  cucumber  and  may  help
encourage breeding cucumber in the cold temperate zone[50].
Thus,  the  multi-function  of FT could  make  it  a  valuable
resource for regulating the flowering time of P. lactiflora.  The
overexpression  of PlFT could  accelerated  the  flowering  of A.
thaliana and  reduced  the  rosette  leaves. PlFT function  study
will  help  us  to  understand  the  molecular  mechanism  of
flowering in P.  lactiflora and provide important  resources  for
genetic  improvement  of P.  lactiflora as  one of  the  important
cut flower plants. 

MATERIALS & METHODS
 

Plant materials and sample preparation
Plants  of Paeonia  lactiflora 'Dafugui'  had  cultivated  for

three  years  in  the  germplasm  repository  of  the  Horticulture
and  Plant  Protection  College,  Yangzhou  University,  Jiangsu
Province,  P.R.  China  (32°39′N,  119°42′E).  Shoot  apical
meristem  (T1),  flower  buds  (T2)  and  flowers  (T3)  were
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Fig.  6    Identification  of  the PlFT gene  in A.  thaliana.  (a)  GUS  staining  results  of  transgenic Arabidopsis lines  with PlFT gene.  (b)  Relative
expression level of target genes in transgenic lines. ft-10 is mutant plant, Col-0 is wild-type plant, other numbers are PlFT transgenic plants.
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separately collected on June 17, 2018, March 9, 2019 and May
9,  2019.  They were  stored at  −80 °C  for  RNA extraction.  RNA
was  separately  extracted  for  these  samples  using  the  Mini
BEST  RNA  Extraction  Kit  (TaKaRa),  and  RNA  samples  was
checked using Nanodrop 2000C (Thermo Scientific).
 

cDNA library construction and sequencing
After total RNA was extracted from 'Dafugui', the sampling

time  points  included  three  stages  with  three  biological
repeats  in  each  step.  A  total  of  nine  samples  were  used  to
construct  cDNA  library  and  de  novo  sequencing.  The  total

RNA  was  performed  by  mRNA  enrichment  or  rRNA  removal.
The  obtained  mRNA  was  fragmented  by  adding  an
appropriate  amount  of  interruption  reagent  under  high
temperatures. A strand of cDNA was synthesized by using the
interrupted  mRNA  as  a  template,  the  two-strand  cDNA  was
then  synthesized  by  configuring  a  two-strand  synthesis
reaction  system.  The  purified  cDNA  was  recovered,  and  the
sticky  end  was  repaired.  The  3  'end  of  the  cDNA  was  added
with a base 'A' and connected to the connector. The fragment
size was then selected, and PCR amplification was performed.
Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-Time PCR
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Fig.  7    Phenotypic  analysis  of  the PlFT gene  in A.  thaliana.  (a)  Phenotype  of  transgenic Arabidopsis (Scale  =  1  cm).  (b)  Flowering  time  of
Arabidopsis DAE in the figure indicates the days after emergence and indicate significant differences (P < 0.01). (c) Heat map of the leaves of the
rosette of Arabidopsis thaliana.
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system  were  used  to  detect  the  constructed  library.  Finally,
the RNA was sequenced after qualification. 

Sequencing data filtering and assembly
The  filtering  software  SOAPnuke  (v1.4.0)  and  trimmatic

(v0.36)  were used for  statistics  and filtering respectively,  and
RSEM (v1.2.8)[51] was used to calculate the expression levels of
genes and transcripts.

Trinity  (v2.0.6)  software  (https://github.com/trinityrnaseq/
trinityrnaseq/wiki)  was  used  for  de  novo  assembly  of  clean
reads.  Tgicl  clustered  the  transcript  to  obtain  Unigene.  The
Unigene is divided into two parts. One is clusters, which is the
result  of  further  redundancy.  To  study  multiple  samples,  we
used  Tgicl  to  cluster  the  Unigenes  of  each  sample  again  to
obtain the final Unigene for subsequent analysis. 

Functional annotation and classification
Seven  functional  databases  (KEGG,  NR,  GO,  NT,  SwissProt,

Pfam  and  KOG)  were  annotated  to  obtain  the  protein
function  annotation  and  metabolic  pathway  annotation  of
Unigene. Blastn is used to annotate Unigene in NT, and Blastx
annotates  Unigene  in  NR,  KOG,  KEGG  and  Swiss-Prot.
Blast2Go and NR are used to annotate GO, and InterProScan5
is used to annotate InterPro. 

Analysis of differentially expressed genes (DEGs)
The  FPKM  values  of  different  genes  in  each  comparison

group  were  clustered.  According  to  the  detection  results  of
DEGs,  hierarchical  clustering  analysis  was  performed  by  the
heat map function in R software. According to GO annotation
and  official  classification,  the  results  of  differential  gene
detection  were  classified  into  parts.  According  to  KEGG
annotation results  and official  type,  the results  of  differential
gene  detection  were  classified  into  biological  pathways.  At
the same time, the hyper function in RESM software was used
for enrichment analysis, then, P-value was calculated and was
corrected  by  FDR  (false  discovery  rate).  DEGs  analyzed  the
data  of  KEGG  pathway  in  different  periods.  log2 (FPKM  of
treatment group /control  group)  > 0  indicates  that  the gene
expression of the treatment group is up-regulated compared
with  that  of  the  control  group,  and  <  0  indicates  down-
regulation. 

Quantitative real-time PCR analysis
Total  RNA  from  all  samples  in P.  lactiflora extracted  by  a

MiniBEST  Plant  RNA  Extraction  Kit  (TaKaRa,  Japan)  was  used
to synthesize cDNA by PrimeScript RT reagent Kit With gDNA
Eraser  (TaKaRa,  Japan)[52] to  anlayze  expression  levels  with  a
BIO-RAD CFX Connect Optics Module (Bio-Rad, Des Plaines, IL,
U.S.A.).  The  2−ΔΔCt comparative  threshold  cycle  (Ct)  method
was referred to calculate their values. 12.5 μL 2 × SYBR Premix
Ex Taq, 2 μL cDNA solution, 2 μL mix solution of primers, and
8.5  μL  ddH2O  in  a  final  volume  of  25  μL  are  the  system  to
perform  qRT-PCR.  The  amplification  conditions  are  95  °C  for
30 s, 40 cycles at 95 °C for 5 s, 52 °C for 30 s, and 72 °C for 30 s.

qRT-PCR was performed to analyze the expression levels of
flowering-related  DEGs  and  to  detect  the  expression  of  the
PlFT gene in Arabidopsis thaliana. All used primers are listed in
Supplemental Tables 4 and 5. 

Sequence analysis of one flowering-related gene
Total  RNA was extracted from the fresh leaves of 'Dafugui'

with  a  Plant  RNA  kit  (TaKaRa,  Japan).  According  to

PrimeScript® RT  reagent  Kit  with  gDNA  eraser  (Perfect  Real
Time),  RNA  was  reserved  into  cDNA.  Using  5'  and  3'  end
primers  synthesized  commercially  (Genery,  China)  were
designed  based  on  the  ORF  sequence  of  the  full-length
sequence  of  DEGs  FT  (gene  ID  CL8783.Contig2_All)  in
transcriptome data. PCR reaction was as follows: one cycle of
94 °C for 3 min; 35 cycles of 94 °C for 30 s, 59 °C for 30 s, 72 °C
for 1 min; and one cycle of 72 °C for 10 min. After testing by
1 % (w/v) agarose gel electrophoresis, the PCR products were
cloned  into  the  pClone007  Vector  and  sequenced.  All  gene-
specific  primers  (Supplemental  Table  5)  were  designed  by
Primer  Premier  5.0.  DNAMAN  7.0.2  was  used  to  assemble
multiple  alignments  of  protein  sequences  of  gene  ID
CL8783.Contig2_All  with  those  from  other  species.  A
Neighbor-Joining  phylogenetic  tree  was  generated  with
MEGA  7.0,  using  the  Poisson  correction  method  and 1000
bootstraps. 

Expression vector construction
The recombinant plant transgenic vector was based on the

obtained  full-length  sequence  of  the  target  gene,  combined
with  the  restriction  site  of  the  binary  expression  vector
pCAMBIA1301  UbiNOS  (Supplemental  Fig.  3)  constructed  by
single  fragment  homologous  recombination.  The Sac I  and
Kpn I  restriction sites on the polyclonal  site of  pCAMBIA1301
were used to double cleave the vector (Supplemental Fig. 4).
At  the  same  time,  the  coding  region  of  the PlFT gene  was
amplified  with  primers  (Supplemental  Table  5)  containing  a
15-20  bp  sequence  of  linearization  vector  (Supplemental
Fig.  5).  The  recombinant  plasmid  pCAMBIA1301-PlFT was
constructed by ligating the target fragment to the vector with
Exnase. 

Transformation of flowering-related PlFT gene into A.
thaliana

The  expression  vector  pCAMBIA1301-PlFT plasmids  were
used  for  the  transformation  of  competent  cells  of
Agrobacterium  tumefaciens  strain  EHA105. Arabidopsis  Col-0
plants  were  transformed  using  the  floral-dip  method[53].  The
inflorescence of A. thaliana was soaked with 1/2 MS infection
liquid  with  transformed Agrobacterium for  1  min  and  then
cultivated under dark conditions for 12 h. The seeds collected
were  recorded  as  T0  (the  first  generation)  seeds.  Transgenic
seeds were all screened on MS medium containing 25 mg L−1

hygromycin (Hyg). 

GUS staining
Using  the  GUS  staining  method,  the  T2  generation

homozygous  transgenic  plants  were  selected,  and  the  wild-
type  plants  in  the  same  period  were  used  as  the  negative
control. The appropriate amount of GUS staining solution was
added  to  the  penicillin  bottle  to  completely  immerse  the
tissue.  After  incubation  at  37  °C  for  1−24  h,  blue  gradually
appeared with the prolongation of incubation time. When the
expression level was high, the active site appeared blue. The
sample  was  then  immersed  in  70  %  ethanol  for  1−3  h  until
the chlorophyll of the sample was removed.
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