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Abstract
Drought causes water shortage and consequent retardation of plants growth and development. Therefore, improving the drought tolerance of

plants  is  necessary  for  expanding  cultivation  and  resource  promotion.  Increasing  evidence  indicates  that  phospholipase  is  involved  in  the

response of plants to drought stress. The objective of this study was to create new drought-tolerant chrysanthemum germplasm, which lays a

foundation for the study of the molecular mechanism of phospholipase mediated stress response in chrysanthemum. CmPLDα has the closest

relationship  with  sunflower  HaPLDα,  and  belongs  to  the  PLDα family. CmPLDα over-expressing  plants  showed  a  slight  shrinking  under  20%

PEG6000 treatment. The survival rate increased significantly by 1.7−1.8 times that of the wild type. Relative water content (RWC) of CmPLDα over-

expressing plants were nearly 10% higher than that of the wild type. Relative electrical conductivity and MDA content were significantly lower

than  those  of  the  wild  type.  ABA  content  of  the  over-expression  lines  Z1,  Z2  were  1.3  and  1.22  times  that  of  wild  type,  but  ABA  content  of

antisense lines F1, F2 was approximately 0.83 and 0.81 of those of wild type. Most plants of antisense transgenic lines F1, F2 were wrinkled, with a

wilting index of 5 and 6, and the survival rate was also lower than that of the wild type after recovery growth. RWC of antisense lines were lower

than over-expression lines, relative electrical conductivity and MDA content were significantly higher than those of the wild type. In summary,

CmPLDα could enhance tolerance of chrysanthemum to drought conditions.
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INTRODUCTION

With changes in climate and precipitation patterns caused
by  global  warming,  drought  conditions  continue  to  be  of
serious  concern.  Lack  of  water  inhibits  the  growth  and
development of plants, which ultimately leads to severe yield
reduction  and  plant  death[1].  Drought  has  seriously  affected
agricultural development and ecological sustainable develop-
ment, and has gradually become a restricting factor in large-
scale cultivation of chrysanthemums. The problem of drought
resistance  of  plants  can  be  solved  through  physiological
regulation, population adaptation and genetic improvement.
Among  them,  the  use  of  genetic  manipulation  to  cultivate
drought-tolerant  varieties  is  one  of  the  effective  methods  to
combat drought stress.

Phospholipid as an integral part of the membrane skeleton
is  an  important  eukaryotic  cell  component,  and  its  metabo-
lites  are  involved  in  regulating  a  variety  of  cellular  functions
and  signal  transduction.  Phospholipases  are  important
enzymes in the phospholipid signaling pathway. According to
the hydrolytic parts of phospholipids, phospholipases can be
divided  into  five  categories  including  phospholipase  A1
(PLA1),  phospholipase A2 (PLA2),  phospholipase C (PLC)  and

phospholipase  D  (PLD),  of  which  PLD  is  the  most  abundant
phospholipase occuring in plants.  The hydrolysis products of
PLD  are  phosphatidic  acid  (PA)  and  hydroxy  compound.
Recently,  research  on  PLD  and  its  hydrolysis  products  in
cellular  signal  transduction has deepened.  PLD in castor  was
the  first  to  be  isolated  by  reverse  transcription[2],  then  PLD
genes  have  been  cloned  from  many  plants  such  as
Arabidopsis[3],  maize[4],  cowpea[5],  tomato[6],  tobacco[7],
poppy[8], peanut[9], peach[10], sunflower[11] and soybean[12].

According  to  sequence  characteristics  and  biochemical
properties,  12  Arabidopsis  PLD  genes  are  divided  into: PLDα
(1, 2, 3), PLDβ (1, 2), PLDγ (1, 2, 3), PLDδ, PLDε and PLDζ (1, 2)[13].
PLDs cloned  from  plants  belong  mainly  to  the  PLDα
subgroup. AtPLDα encodes  809  amino  acids.  The  sequence
similarity  of  PLDα from  different  plants  ranges  from  75%  to
90%. All  members of  PLD have two HKD motifs  (HXKXXXXD)
at  intervals  of  320  amino  acids,  where  H  represents  His
(histidine),  K  represents  Lys  (lysine)  and  D  represents  Asp
(aspartic acid)[14].

PLD  plays  a  role  in  the  regulation  of  plant  growth  and
development,  plant  hormones,  abiotic  stresses  tolerance,
disease  resistance  through  lipid  degradation,  reconstruction
of  the  membrane  and  cytoskeleton  and  vesicle  trafficking.
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Drought enhanced expression of PLD and activity in drought
sensitive  cowpea  varieties,  while PLD expression  is  not
affected  in  the  drought-resistant  varieties[5]. PLDα-depleted
plants  are  more  sensitive  to  moisture  loss,  and  the  leaves  of
PLDα-overexpressing  plants  are  more  sensitive  to  ABA
compared to wild type. Under drought stress, PLDα generates
PA  to  regulate  stomata  opening  and  closing  in  ABA
signaling[15]. PA binds to ABI1 (protein phosphatases 2C), and
anchored  ABI1  from  the  cytoplasm  to  the  cell  membrane,
consequently  inhibiting  the  negative  regulatory  role  of  ABI1
on stomata closure[16]. In addition, the interaction of G protein
and  PLDα1  enhances  the  ABA  inhibitory  effect  on  stomata
opening[17].

Drought  hampers  the  yield  and  quality  of  cut
chrysanthemum,  a  leading  ornamental  plant  globally.  A
number  of  genes  and  transcription  factors  involved  in  stress
tolerance regulation have been explored[18−21]. However, how
phospholipase  participates  in  drought  tolerance  regulation
has  not  been  reported  in  chrysanthemum.  Here  we  cloned
CmPLDα from  chrysanthemum  'Jinba',  and  generated
CmPLDα transgenic  chrysanthemum.  Drought  tolerance
assays showed that CmPLDα enhanced the drought tolerance
of  chrysanthemum  by  maintaining  water  balance  and
membrane integrity. 

MATERIALS AND METHODS
 

Isolation of CmPLDα
Chrysanthemum  'Jinba'  was  obtained  from  the  Chrysan-

themum  Germplasm  Resource  Preserving  Centre,  Nanjing
Agricultural  University,  China.  Total  RNA  was  isolated  from
chrysanthemum  'Jinba'  leaves  using  the  RNAiso  reagent
(TaKaRa, Japan). The degenerate PCR primers (DPF/R in Table 1)

were  designed  based  on  a  peptide  alignment  of  the  PLD
sequences of Helianthus annuus (GenBank accession number
ABU54776.1), Ricinus  communis (AAB37305.1), Solanum  lyco-
persicum (AAF17557.1), Litchi chinensis (ADP23922.1), Citrus
sinensis (ACA49723.1), Dimocarpus longan (ADY75750.1).
RACE technology was used to isolate the full  length CmPLDα
cDNA sequence following the description of Song et al.[20]. 

Protein structure and phylogenetic analysis of CmPLDα
The  GenBank  BLAST  program  (https://blast.ncbi.nlm.nih.

gov/Blast.cgi)  was  applied  on  sequence  homology  analysis.
The  open  reading  frame  (ORF)  of  the  gene  was  found  by
DNAMAN  v9.0  software.  The  homologous  amino  acid
sequence was aligned using ESPript3.0 (https://espript.ibcp.fr/
ESPript/ESPript/index.php).  The  tertiary  structure  was  con-
structed using SWISS-MODEL (https://swissmodel.expasy.org)
and a phylogenetic tree was constructed using Clustal X and
MEGA X software. 

Expression vector constructs and generation of
transgenic chrysanthemum

The  pBIG  vector  driven  by  CaMV  35S  promoter  was
employed.  Two pairs  of  primer SacI-SF, SmaI-SR  and SacI-AF,
SmaI-AR  (Table  1)  were  used  to  amplify  the  ORF  of CmPLDα,
pBIG-  (+/−)  -CmPLDα was  constructed  using  the  restriction
enzyme  of SacI  and SmaI.  pBIG-  (+/−)  -CmPLDα was  trans-
formed  into Agrobacterium  tumefaciens EHA105  using  the
heat shock method[22].  Leaf discs measuring 0.5 cm × 0.5 cm
were  prepared  from  25−30  day  old in  vitro chrysanthemum
'Jinba'  seedlings,  then  were  cultivated  on  MS  medium  with
1.0 mg·L−1 6-BA, 0.5 mg·L−1 NAA. The Agrobacterium infected
discs  were  transferred  to  MS  medium  with  1.0  mg·L−1 6-BA,
0.5  mg·L−1 NAA,  10  mg·L−1 kanamycin  and  300  mg·L−1

carbenicillin.  Kanamycin-resistant  shoots  were  rooted  on  MS
medium  with  7  mg·L−1 kanamycin  and  200  mg·L−1

Table 1.    Primer sequences used in this study.

Primer Sequence (5'–3') Usage

DPF TGCATGCTGGTGTGGGAYGAYMGNAC Degenerated PCR
DPR CGTCCATGGACCGCTGRTTDATRTT /
Oligo (dT) prime GACTCGAGTCGACATCGATTTTTTTTTTTTTTTTT /
dT-AP AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTTTTTTTT 3'-RACE
AP-R AAGCAGTGGTATCAACGCAGAGTAC /
GSP1 TCACGCTATAAGAAGAGCAA /
GSP2 GGACTGGCAAAGGAGGACTA /
RGSP1 TAAACCGACCATCCCGTG 5'-RACE
RGSP2 CGCACTAGTAATGGCATCGAATATA /
RGSP3 ACATCTGTGGGGTTCGTAATACTTC /
AAP GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG /
AUAP GGCCACGCGTCGACTAGTAC /
PLDSP ATGGCTCAGATACTGCTCCATGGTA ORF amplifications
PLDAP CAATGCAAACATGGCTTATTACATC /
qGSP-F CACTTGCTTCGGTACCCTATTG qRT-PCR
qGSP-R ACACAACCACCAAACATGACCT /
EF1α-F TGTAACAAGATGGATGCCACAA /
EF1α-R TCGCCCTCAAACCCAGAAAT /
SmaI-SF TCCCCCGGGGGAATTCGATTCCAAGATTATGGCTCAG Vector construction
SacI-SR CCGAGCTCGGCACACAACCACCAAACATGACCTTA /
SmaI-AF TCCCCCGGGGGACACACAACCACCAAACATGACCTTA /
SacI-AR CCGAGCTCGGATTCGATTCCAAGATTATGGCTCAG /
NPTII-F TCTGATGCCGCCGTGTTC Transgenic detection
NPTII-R GATGTTTCGCTTGGTGGTCG /
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carbenicillin[23,24].  Kanamycin-resistant  plants  were  identified
using a PCR assay with the primer pair NPTII-F/R (Table 1). The
PCR  programs  were  95  °C/3  min,  35  cycles  of  94  °C/30  s,
55  °C/30  s,  72  °C/30  s,  72  °C/10  min.  Quantitative  Real-Time
PCR was used to determine the expression of CmPLDα in the
transgenic  lines  with  the  primer  pair  qGSP-F/R  and  the
reference  primer  pair EF1α-F/R  (Table  1).  20 µl  RT-qPCR
reaction  consisted  of  10  ng  cDNA,  0.2  mmol·L−1 of  each
primer and 10 µl SYBR Green PCR master mix. The PCR regime
contained  a  denaturation  step  of  95  °C/60  s,  followed  by  40
cycles of 95 °C/15 s, 60 °C/15 s, 72 °C/45 s. Relative expression
levels were calculated using the 2−ΔΔCT method[25]. 

Drought stress treatment
Cuttings  of  chrysanthemum  'Jinba'  were  rooted  in  a

substrate  comprising  of  perlite  and  vermiculite  in  a  1:1  ratio
based  on  volume  in  a  greenhouse  with  a  photoperiod  of
16  h/8  h  (light/dark)  and  a  relative  humidity  of  70%.  The
day/night temperature was 23 °C/18 °C and the light intensity
100 µmol·m−2S−1,  respectively.  Rooted  plants  at  the  6−8  leaf
stage were subjected to a mimicked drought treatment using
20% w/v polyethylene glycol  (PEG) 6000 for 24 h.  The leaves
were harvested after 0, 1, 4, 8, 12 and 24 h following the PEG
treatment.  Harvested  leaves  were  frozen  in  liquid  nitrogen
and  stored  at  −80  °C.  Survival  rates  were  monitored  after  a
week  of  recovery,  where  the  roots  of  the  PEG  treated  plant
were washed in tap water for 5 min, then plants were placed
in  fresh  water  for  one  week  for  recovery.  The  experiment
includes three replicates 

Determination of drought tolerance and
physiological changes

Morphological  appearance  was  documented  by  photo-
graphic recording. The wilting index was divided into 7 levels
(0−6)  according to the degree of  leaf  wilting[26].  Leaf  relative
water  content  (RWC)  =  (fresh  weight  −  dry  weight)/fresh
weight × 100%. Relative electrical conductivity (REC) = (initial
conductivity/electrical conductivity after heating and cooling)
× 100%. Malondialdehyde (MDA) assay was conducted using
thiobarbituric  acid  colorimetry[27].  Leaf  samples  in  triplicate
were  extracted  with  80%  methanol,  and  Abscisic  acid  (ABA)
contents  were  analyzed  using  HPLC  based  on  the  method
described by Chen and Yang[28]. 

Data analysis
Data  were  presented  as  mean  ±  standard  deviation  (S.D.).

All data were subjected to analysis of variance (ANOVA) using
SPSS  20.0  (IBM  Corp,  Somers,  NY,  USA).  The  least  significant
difference (LSD)  multiple  range test  was  used to  analyze the
results after one-way analysis of variance. Data mapping were
performed using GraphPad Prism 5 software (San Diego,  CA,
USA). 

RESULTS
 

Identification and sequence analysis of CmPLDα
Based  on  the  conserved  sequences  of PLDα from  other

plants,  a  putative PLDα homologous  gene  designated  as
CmPLDα was  isolated  from  chrysanthemum  by  RT-PCR  and
RACE-PCR  methods.  The CmPLDα cDNA  consists  of  2,697  bp
with a 2,427 bp ORF encoding for 809-amino acid proteins. A

homology  blast  showed  that  CmPLDα contains  conserved
PLDα domains,  two  HKD  motifs  and  C2  domain  (Fig.  1b).
CmPLDα is  substantially  homologous  to  other  PLDα from
other  species  with  a  sequence  identity  between  71%  and
88%,  and  CmPLDα showed  the  highest  similarity  to  that  of
Helianthus  annuus (Fig.  1a).  The  secondary  structure  of
CmPLDα contains 30 β-strands, 24 β-turns, 15 α-helices and 8
η helices  (Fig.  1a).  These  structures  constitute  the  tertiary
structure  of  CmPLDα (PDB:  6kz9,  sequence  identity:  78.99%,
Fig. 1c). Phylogenetic analysis showed that CmPLDα clustered
with  PLDα1  members  from  Compositae  such  as Cynara
cardunculus, Helianthus  annuus, Lactuca  sativa and Artemisia
annua (Fig. 2). 

CmPLDα transgenics
In total, three sense and four antisense CmPLDα transgenic

lines were detected from the kanamycin-resistant lines using
PCR analysis (Fig. 3a).  The overexpression transgenic lines Z1
and  Z2  lines  showing  2.4  and  2.5  times  up-regulated
expression  levels  compared  with  the  control,  and  the
silencing transgenic lines F1 and F2 with 0.46 and 0.56 times
down-regulated  expression  of  the  control  were  selected  for
subsequent assay (Fig. 3b). 

Drought tolerance assay of transgenic plants
Following  drought  stress  treatment,  most  plants  of

transgenic lines Z1, Z2 remained green, only the basal leaves
wrinkled  and  wilted.  Wilting  index  of  Z1,  Z2  were  3  (Fig.  4),
and  the  survival  rate  was  85.4%−90.6%  after  the  recovery
growth (Fig. 5b),  however,  only a few leaves of the wild type
plants  remained green,  and the wilting index of  these was 4
(Fig.  4)  with  a  survival  rate  of  52.4%  (Fig.  5b).  Of  note  for
antisense  lines  F1,  F2,  most  plants  were  heavily  wilted,  and
the  wilting  indexes  were  5  and  6  (Fig.  4),  the  survival  rates
were 33.7% and 41.3%, respectively (Fig. 5b).

The water content of the CmPLDα overexpression lines was
significantly higher than that of the WT plants and antisense
transgenic  lines  after  4  h  of  PEG  treatment.  After  12  h,  the
water  content  of  the  overexpression  lines  Z1,  Z2  were  10%,
11.5%  higher  than  that  of  the  WT  plants  (Fig.  6).  The  water
content of antisense lines F1, F2 were 3%, 5% lower than that
of  the  control  (Fig.  6),  indicating  that  the CmPLDα gene  can
increase the water retention capacity of the plant.

After  12  h  of  PEG  treatment,  the  relative  electrical
conductivity of the CmPLDα overexpression lines were 18.4%,
17.5%  lower  than  that  of  WT  plants,  the  relative  electrical
conductivity  of  the CmPLDα antisense  lines  were  24.8%,
21.1% higher than that of WT plants (Fig. 7a). MDA content in
WT  plants  and  the  rate  of  increase  of  MDA  was  significantly
greater than those of the CmPLDα overexpression lines Z1, Z2.
After  24  h  of  PEG  treatment,  MDA  content  of  the CmPLDα
overexpression lines was 14.4%, 17.5% lower than that of WT
plants (Fig. 7b). MDA content of CmPLDα antisense lines were
significantly  higher  than  that  of  the CmPLDα overexpression
lines  and  WT  plants  (Fig.  7b),  suggesting  that CmPLDα
provided a better membrane permeability in chrysanthemum
in response to drought stress.

Changes  in  ABA  content  in  different  lines  was  detected
(Fig.  8).  After  1  h  of  drought  stress,  the  ABA  content  of
CmPLDα overexpression  lines  were  significantly  higher  than
that  of  WT  plants.  The  ABA  content  was  highest  24  h  after
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Fig. 1    Sequence analysis of CmPLDα. (a) Alignment of CmPLDα with other known PLD homolog proteins. Secondary structure elements are
shown at the top (helix with wavy lines, β-strand with arrows, and turns with TT letters). (b) C2 domain (existed between 9−125aa) and two HKD
motifs  (existed  between  332−339aa  and  660−667aa).  (c)  The  tertiary  structure  of  CmPLDα (PDB:  6kz9)  with  sequence  identity  78.99%  using
homolog modeling.

 
Drought tolerance in Chrysanthemum

Page 4 of 10   Zhai et al. Ornamental Plant Research 2021, 1: 8



drought  stress  treatment,  and  ABA  content  in  the

overexpression  lines  Z1,  Z2  were  1.3,  1.22  times  that  of  the

WT (Fig. 8a). The ABA content of antisense transgenic lines F1,

F2  were  0.83,  0.81  times  that  of  WT  plants  at  8h  drought

treatment (Fig. 8a). The expression level of ABA synthesis key

gene CmNCED was  consistent  with  the  changes  in  ABA

content. At 4h of drought stress, gene expression levels of the

overexpression  lines  were  10.9,  12.0  times  that  of  the  WT

plants  (Fig.  8c).  The  expression  of  the  downstream  gene

CmRD29B were 4.1, 4.2 times that of WT plants at 1 h drought

stress  (Fig.  8b).  The  expression  levels  of CmNCED and

CmRD29B of  the CmPLDα antisense  lines  were  lower  overall

than  those  of CmPLDα overexpression  lines  and  WT  plants

(Fig. 8b, c).
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Fig. 2    Phylogenetic tree analysis of CmPLDα.  The phylogenetic tree revealed four branches and the red font indicates CmPLDα.  The source
and  accession  number  of  the  amino  acids  are  as  follows:  AtPLDα1  (Arabidopsis  Thaliana NP_188194.1)  ,  AtPLDα2  (Arabidopsis  Thaliana
NP_175666.1),  StPLDα1  (Senna  tora KAF7814366.1),  QsPLDα1  (Quercus  suber XP_023925867.1),  TwPLDα1  (Tripterygium  wilfordii
XP_038717853.1), PePLDα1 (Populus euphratica XP_011008452.1), RcPLDα1 (Ricinus communis NP_001310687.1), MePLDα1 (Manihot esculenta
XP_021629145.1),  HbPLDα (Hevea  brasiliensis XP_021672614.1),  AaPLDα1  (Artemisia  annua PWA90284.1),  LsPLDα1  (Lactuca  sativa
XP_023761181.1),  HaPLDα1  (Helianthus  annuus ABU54776.1),  CcPLDα1  (Cynara  cardunculus XP_024972255.1),  CaPLDα1  (Coffea  arabica
XP_027126646.1),  RsPLDα1  (Rhododendron  simsii KAF7135150.1),  CsPLDα1  (Camellia  sinensis XP_028072531.1),  AcPLDα1  (Actinidia  chinensis
PSR96034.1),  SlPLDα1  (Solanum  lycopersicum AAG45485.1),  NtPLDα1  (Nicotiana  tabacum XP_016458333.1),  HiPLDα1  (Handroanthus
impetiginosus PIN16148.1),  SiPLDα1 (Sesamum indicum XP_011073436.1),  PjPLDα1 (Phtheirospermum japonicum GFP88976.1) ,  OePLDα1 (Olea
europaea CAA3025459.1).
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Fig.  3    Detection  of CmPLDα transgenic  chrysanthemum  plants.  (a)  PCR  analysis  of  putative CmPLDα transgenic  plants  in  the  kanamycin
resistant  lines.  M:  DL2000,  1:  Positive  control  (Plasmid  pBIG-CmPLDα DNA),  2:  Non-transformed  plant,  3:  Blank  control  (H2O),  4−6: CmPLDα
overexpressing lines,  7−10: CmPLDα antisense transgenic  lines.  (b)  The relative  expressions  level  of CmPLDα in  the wild  type and transgenic
plants.  SM:  Wild  type,  Z1,  Z2: CmPLDα overexpressing  lines,  F1,  F2: CmPLDα antisense  transgenic  lines.  Representative  results  from  three
biological replicates are shown. Values are mean ± S.D., and different letters indicate significant differences at p < 0.05 (Fisher's LSD).
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Fig.  4    The  morphological  response  of  the  wild  type  and CmPLDα transgenic  plants  to  PEG-induced  drought  stress.  SM:  Wild  type,  Z1,  Z2:
CmPLDα overexpressing lines, F1, F2: CmPLDα antisense transgenic lines.
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Fig. 5    Drought tolerance assay of the wild type and CmPLDα transgenic plants. SM: Wild type, Z1, Z2: CmPLDα overexpressing lines, F1, F2:
CmPLDα antisense transgenic  lines.  (a)  Survival  rate  of  recovery growth.  (b)  Each value is  the mean ± S.D.  of  nine biological  determinations,
different letters indicate significant differences at p < 0.05 (Fisher's LSD) when comparing values under the same treatment conditions.
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DISCUSSION

PLD from  Arabidopsis[3],  tobacco[7],  tomato[6],  sunflower[11]

and other plants have been cloned,  however,  its  homologue
has  not  been  isolated  in  chrysanthemum.  Here  we  cloned  a
PLD from  chrysanthemum,  and  the  sequence  characteristics
and  phylogenetic  analysis  showed  that  the  cloned CmPLDα
belongs to C2-PLDs of the PLDα family.

Previous  studies  have  shown  that  PLD  functions  as  a
phospholipid  transfer  protein  involved  in  the  hydrolysis  of
phospholipids,  the  hydrolysis  products  such  as  phosphatidic

acid (PA), diacylglycerol (DAG), free fatty acid (FFA) participate
in  stress  responses  or  developmental  regulation.  In  the
present study, we showed that drought resistance of CmPLDα
overexpressing  chrysanthemum  had  been  significantly
improved.  Similarly,  poplar PLDα1 overexpressing plants  had
higher  drought  resistance than the  wild  type lines,  but  RNAi
plant  had  lower  drought  resistance  than  wild  type.  Most  of
the CmPLDα overexpressing  lines  remained  green,  whereas
most of the CmPLDα antisense transgenic plants wilted under
PEG  treatment.  As  an  important  indicator  of  plant  water
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Fig. 6    The leaf RWC in the wild type and CmPLDα transgenic plants under drought stress. SM: Wild type, Z1, Z2: CmPLDα overexpressing lines,
F1,  F2: CmPLDα antisense  transgenic  lines.  Each  value  is  the  mean  ±  S.D.  of  nine  biological  determinations,  and  different  letters  indicate
significant differences at p < 0.05 (Fisher's LSD) when comparing values under the same time conditions.
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Fig. 7    Relative electrical conductivity (a) and MDA content (b) in drought stressed leaves of wild type and CmPLDα transgenic plants. SM: Wild
type,  Z1,  Z2: CmPLDα overexpressing  lines,  F1,  F2: CmPLDα antisense  transgenic  lines.  Each  value  is  the  mean  ±  S.D.  of  three  biological
replicates, different letters indicate significant differences at p < 0.05 (Fisher's LSD) when comparing values under the same time conditions.
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status,  the  higher  relative  water  content  (RWC)  in  the
overexpression lines  suggested that CmPLDα could  maintain
better  water  status  to  alleviate  drought  stress.  Relative
electrical  conductivity  and  MDA  content  in CmPLDα
overexpressing lines  were lower than those in  wild type and
antisense  lines,  indicating  that CmPLDα improved  plant
drought  tolerance  through  maintaining  membrane  integrity
of the plant, which is in line with previous studies[29,30].

It  has  been  found  that  PLDα played  an  important  role  in
stomate movement. PLDα1 improves plant drought tolerance

by  maintaining  the  plant  cell  membrane  stability,  and
inducing stomate closure to reduce the loss of moisture when
subjected  to  water  stress[29,30].  ABA  is  an  important  plant
hormone  in  the  regulation  of  stomate  opening  and  closing
under  stress.  PLDα regulates  stomate  opening  and  closing
through  ABA.  Leaves  of PLDα overexpression  were  more
sensitive to ABA[15].  PLDα1 participates in the ABA regulation
of  stomata  movement  mainly  through  two  processes:  PA
anchored  negative  regulatory  protein  ABI1  from  the
cytoplasm  to  the  cell  membrane  through  interaction  with
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Fig. 8    ABA content (a) and the relative expressions level of ABA-responsive gene CmRD29B (b) and ABA biosynthesis gene CmNCED3 (c) in
wild type and CmPLDα transgenic plants under drought stress. SM: Wild type, Z1, Z2: CmPLDα overexpressing lines, F1, F2: CmPLDα antisense
transgenic lines. Each value is the mean ± S.D. of three biological replicates, different letters indicate significant differences at p < 0.05 (Fisher's
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ABI1, thereby inhibiting the negative regulatory role stomata
closure  of  ABI1[16],  PLDα1  and  G  protein  both  positively
regulate  ABA  inhibition  of  stomata  opening[17].  Hong  et  al.
found  that PLDα3 overexpressing  and  knockout  lines  had  a
small,  yet  significant,  effect  on  ABA  content,  ABA  content  of
overexpression lines were higher than knockout lines, RD29B
expression  levels  of  overexpression  lines  increased  after
drought  stress[31].  In  our  study,  expression  of  the  ABA
synthesis  gene CmNCED and  ABA  content  increased  in
CmPLDα overexpression  lines  compared  to  the  WT  plants,
which  may  promote  ABA  regulated  stomate  closure.  As  one
of  Arabidopsis  dehydration-induced  genes, RD29B encoding
hydrophilic  proteins[32] may  regulate  genes  participating  in
downstream  resilience  of  ABA  signal  transduction,  thereby
improving  the  drought  tolerance  of  transgenic  plants.  Here
we also observed an increase in the expression of CmRD29B in
CmPLDα overexpression  lines,  which  again  supports  the
hypothesis  that CmPLDα enhanced  drought  tolerance  is
related  to  the  ABA  signaling  pathway.  In  summary, CmPLDα
could enhance drought tolerance in preventing partial water
loss via ABA, stabilizing the membrane under drought stress.
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