Figures (1)  Tables (2)
    • Figure 1. 

      Schematic diagram of the peptide signal processing process (using RGF6 as an example).

    • Protein ID Substrate Cleave site Ref.
      AtSBT1.1 proAtPSK4 SLVL↓HTDY [11]
      AtSBT1.4 proCLE40 QVPT↓GSDPLHHK↓HIPF [15]
      AtSBT1.7 proCLE40 QVPT↓GSDPLHHK↓HIPF [15]
      AtSBT1.8 proTWS1 LE↓DYNFPVDP...KPGPIEH↓GTP [16]
      AtSBT2.4 proTWS1 PIEH↓GTP [19]
      AtSBT3.5 proSCOOP12 RRLM↓ [20]
      AtSBT3.8 proPSK1 YIYTQ↓DLN [13]
      proSCOOP20 VWD↓ [20]
      proRGF6 VM↓D [18]
      proRGF9 DM↓D [18]
      AtSBT4.12 proIDA YLPK↓GVPIPPSAPSKRHN↓SFVN [14]
      AtSBT4.13 proCLE40 RQVPT↓GSDPLHHK↓HIPF [15]
      proIDA YLPK↓GVPIPPSAPSKRHN↓SFVN [14]
      AtSBT5.2 proEPF2 SLPD↓CSYA [40]
      proIDA YLPK↓GVPIPPSAPSKRHN↓SFVN [14]
      AtSBT5.4 proCIF4 PVPH↓GSL [41]
      AtSBT6.1 proRGF6 RRLR↓and RRRAL↓ [21]
      proRGF9 RRLR↓and RRRAL↓ [18]
      proRALF23 RRAL↓and RRIL↓ [17]
      SlPhyt2 proSlPSK HLD↓ [12]

      Table 1. 

      Proteolytic processing of plant signaling peptides by SBTs.

    • Protein ID Biological function Ref.
      AtSBT1.1 Callus induction [11]
      Control of cotyledon cell number [53]
      AtSBT1.2 Controls the development of cell lineages [49]
      AtSBT1.4 Reproductive development and silique number [29]
      AtSBT1.6 Regulating germination through GA [54]
      AtSBT1.7 Mucilage release from seed coats [27]
      AtSBT2.4 Controls embryonic cuticle formation via [48]
      AtSBT2.5 Plant morphogenesis and development [55]
      AtSBT3.3 Immune priming [56]
      AtSBT3.5 Root development [57]
      AtSBT3.8 Drought responses [13]
      AtSBT3.14 Basal immunity priming [58]
      AtSBT4.12 Abscission of floral organs [14]
      AtSBT4.13 Abscission of floral organs [14]
      AtSBT5.2a Control of stomatal development [40]
      Abscission of floral organs [14]
      AtSBT5.2b Attenuation of defense gene expression [59]
      AtSBT5.3 Lateral root development [60]
      AtSBT5.4 Overexpression produced a clavata-like phenotype [52]
      AtSBT6.1 Precursor processing [17,31]
      AtSBT6.2 Protein turnover [61]
      SlPhyt2 Drought-induced flower drop [12]
      SlPhyt3 Trigger non-autolytic cell death under oxidative stress [62]
      SlPhyt4
      SlPhyt5
      CpSUB1 Fruit ripening [63]
      GmSLP-1 Seed coat development [64]
      AcoSBT1.12 Floral transition [65]
      TaSBT1.7 Plant defense [66]
      GhSBT27A Drought responses [67]

      Table 2. 

      Biological functions of SBTs.