Figures (13)  Tables (1)
    • Figure 1. 

      A schematic constant-volume combustion vessel[10].

    • Figure 2. 

      Experimental and simulated LBVs of cyclopentanone/air mixtures at 443 K and 1−5 atm.

    • Figure 3. 

      Measured Markstein lengths of cyclopentanone/air flames at 443 K and 1–5 atm.

    • Figure 4. 

      Main reaction networks in cyclopentanone flame at 1 atm (black: ϕ = 0.7, red: ϕ = 1.4).

    • Figure 5. 

      Sensitivity analysis of LBV for cyclopentanone/air mixtures at 473 K, 1 atm, and various equivalence ratios.

    • Figure 6. 

      Measured and simulated LBVs for cyclopentanone/air mixtures.

    • Figure 7. 

      Measured LBVs of cyclopentanone/air mixtures at 443 K, ϕ = 0.6, 0.8, and 1.2.

    • Figure 8. 

      Measured (symbols) and simulated (lines) pressure dependent coefficient β for cyclopentanone/air flame.

    • Figure 9. 

      Sensitivity analysis of LBV for cyclopentanone/air mixtures at ϕ = 1.0 and various pressures.

    • Figure 10. 

      Simulated LBVs of cyclopentanone, cyclopentanol[29,31], and cyclopentane[30] at 1 atm and 443 K.

    • Figure 11. 

      Calculated adiabatic flame temperatures for cyclopentanone, cyclopentanol, and cyclopentane at 1 atm and 443 K.

    • Figure 12. 

      C-H BDE (kcal/mol) of cyclopentanone[9], cyclopentanol[29], and cyclopentane[29] at 298 K.

    • Figure 13. 

      Simulated maximum mole fraction of key radicals in cyclopentanone, cyclopentane, and cyclopentanol flames

    • Model Year Number of species Number of reactions
      Sun model 2018 515 2,840
      Zhang model 2020 239 1,660
      Li model 2021 220 1,671

      Table 1. 

      Details of the chemical kinetic models published in literature.