[1] Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, et al. 2016. Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy 6:54 doi: 10.3390/agronomy6040054
[2] Rahman MM, Mostofa MG, Rahman MA, Islam MR, Tran LSP, et al. 2019. Acetic acid: a cost-effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sientific Reports 9:15186 doi: 10.1038/s41598-019-51178-w
[3] Zhang J, Shi Y, Zhang X, Du H, Xu B, et al. 2017. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ. Exp. Bot. 138:36−45 doi: 10.1016/j.envexpbot.2017.02.012
[4] Rossi S, Chapman C, Huang B. 2020. Suppression of heat-induced leaf senescence by γ-aminobutyric acid, proline, and ammonium nitrate through regulation of chlorophyll degradation in creeping bentgrass. Environ. Exp. Bot. 177:104116 doi: 10.1016/j.envexpbot.2020.104116
[5] Zhang J, Xing J, Lu Q, Yu G, Xu B, et al. 2019. Transcriptional regulation of chlorophyll-catabolic genes associated with exogenous chemical effects and genotypic variations in heat-induced leaf senescence for perennial ryegrass. Environ. Exp. Bot. 167:103858 doi: 10.1016/j.envexpbot.2019.103858
[6] Kim JM, To TK, Matsui A, Tanoi K, Kobayashi NI, et al. 2017. Acetate-mediated novel survival strategy against drought in plants. Nature Plants 3:17097 doi: 10.1038/nplants.2017.97
[7] Kürsteiner O, Dupuis I, Kuhlemeier C. 2003. The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiology 132:968−78 doi: 10.1104/pp.102.016907
[8] Liu F, Schnable PS. 2002. Functional specialization of maize mitochondrial aldehyde dehydrogenases. Plant Physiology 130:1657−74 doi: 10.1104/pp.012336
[9] de Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R. 1996. Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiology 111:381−91 doi: 10.1104/pp.111.2.381
[10] Christie PJ, Hahn M, Walbot V. 1991. Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiology 95:699−706 doi: 10.1104/pp.95.3.699
[11] Kato-Noguchi H. 2001. Wounding stress induces alcohol dehydrogenase in maize and lettuce seedlings. Plant Growth Regulation 35:285−8 doi: 10.1023/A:1014489922792
[12] Hossain MS, Abdelrahman M, Tran CD, Nguyen KH, Chu HD, et al. 2019. Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environmental Pollution 258:113544 doi: 10.1016/j.envpol.2019.113544
[13] Zhang J, Yu G, Wen W, Ma X, Xu B, et al. 2016. Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass. Journal of Experiment Botany 67:935−45 doi: 10.1093/jxb/erv509
[14] Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, et al. 2020. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63:635−74 doi: 10.1007/s11427-020-1683-x
[15] Ryu H, Cho YG. 2015. Plant hormones in salt stress tolerance. Journal of Plant Biology 58:147−55 doi: 10.1007/s12374-015-0103-z
[16] Zhu J. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6:441−5 doi: 10.1016/S1369-5266(03)00085-2
[17] Ma X, Zhang J, Huang B. 2016. Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environ. Exp. Bot. 125:1−11 doi: 10.1016/j.envexpbot.2016.01.002
[18] Valenzuela CE, Acevedo-Acevedo O, Miranda GS, Vergara-Barros P, Holuigue L, et al. 2016. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in arabidopsis primary root. Journal of Experimental Botany 67(14):4209−20 doi: 10.1093/jxb/erw202
[19] Altpeter F, Xu J, Ahmed S. 2000. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage- and turf-type cultivars. Molecular Breeding 6:519−28 doi: 10.1023/A:1026589804034
[20] Gierth M, Mäser P. 2007. Potassium transporters in plants-Involvement in K+ acquisition, redistribution and homeostasis. FEBS Letters 581(12):2348−56 doi: 10.1016/j.febslet.2007.03.035
[21] Yuan H, Ma Q, Wu G, Wang P, Hu J, et al. 2015. ZxNHX controls Na+ and K+ homeostasis at the whole-plant level in Zygophyllum xanthoxylum through feedback regulation of the expression of genes involved in their transport. Ann. Bot. 115:495−507 doi: 10.1093/aob/mcu177
[22] Gao Y, Li M, Zhang X, Yang Q, Huang B. 2020. Up-regulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum. Plant Cell and Environment 43(1):159−73 doi: 10.1111/pce.13657
[23] Deinlein U, Stephan AB, Horie T, Luo W, Xu G, et al. 2014. Plant salt tolerance mechanisms. Trends Plant Sci. 19:371−9 doi: 10.1016/j.tplants.2014.02.001
[24] Wang R, Jing W, Xiao L, Jin Y, Shen L, et al. 2015. The rice high-affifinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB type transcription factor. Plant Physiology 168:1076−90 doi: 10.1104/pp.15.00298
[25] Munns R, James RA, Xu B, Athman A, Conn SJ, et al. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 30:360−4 doi: 10.1038/nbt.2120
[26] Zhang Z, Wang Y, Chang L, Zhang T, An J, et al. 2016. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Reports 35:439−53 doi: 10.1007/s00299-015-1895-5
[27] van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:1−31 doi: 10.1146/annurev-arplant-050718-100005
[28] Merewitz EB, Gianfagna T, Huang B. 2011. Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. Journal of Experimental Botany 62(1):383−95 doi: 10.1093/jxb/erq285
[29] Jiang C, Belfield EJ, Cao, Y, Smith, JAC, Harberd NP. 2013. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. The Plant Cell 25:3535−52 doi: 10.1105/tpc.113.115659
[30] Yang L, Zu YG, Tang ZH. 2013. Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environ. Exp. Bot. 86:60−9 doi: 10.1016/j.envexpbot.2010.08.006
[31] Rahman MM, Mostofa MG, Keya SS, Rahman MA, Das AK, et al. 2020. Acetic acid improves drought acclimation in soybean: an integrative response of photosynthesis, osmoregulation, mineral uptake and antioxidant defense. Physiologia Plantarum In press doi: 10.1111/ppl.13191
[32] Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. California Agricultural Experimental Station Circular 347:1−32
[33] Turgeon AJ. 1991. Turfgrass Management. Upper Saddle River NJ: Prentice-Hall Inc.
[34] Arnon DI. 1949. Copper enzymes in isolated chloroplasts, polyphenoloxidase in beta vulgaris. Plant Physiology 24:1−15 doi: 10.1104/pp.24.1.1
[35] Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−7 doi: 10.2135/cropsci1981.0011183X002100010013x
[36] Elstner EF, Heupel A. 1976. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal. Biochem. 70:616−20 doi: 10.1016/0003-2697(76)90488-7
[37] Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 151:59−66 doi: 10.1016/S0168-9452(99)00197-1
[38] Meloni DA, Oliva MA, Martinez CA, Cambraia J. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 49:69−76 doi: 10.1016/S0098-8472(02)00058-8
[39] Chance B, Maehly AC. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2:764−75 doi: 10.1016/S0076-6879(55)02300-8
[40] Zhang J, Li H, Xu B, Li J, Huang B. 2016. Exogenous melatonin suppresses dark induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.). Front. Plant Sci. 7:1500 doi: 10.3389/fpls.2016.01500
[41] Redestig H, Fukushima A, Stenlund H, Moritz T, Arita M, et al. 2009. Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data. Analytical Chemistry 81(19):7974−80 doi: 10.1021/ac901143w
[42] Xu B, Yu G, Li H, Xie Z, Wen W, et al. 2019. Knockdown of STAYGREEN in perennial ryegrass (Lolium perenne L.) leads to transcriptomic alterations related to suppressed leaf senescence and improved forage quality. Plant and Cell physiology 60(1):202−12 doi: 10.1093/pcp/pcy203