[1] Ge X, Zhou B, Wang X, Li Q, Cao Y, et al. 2018. Imposed drought effects on carbon storage of moso bamboo ecosystem in southeast China: results from a field experiment. Ecological Research 33:393−402 doi: 10.1007/s11284-017-1529-1
[2] Tao G, Ramakrishnan M, Vinod KK, Yrjälä K, Satheesh V, et al. 2020. Multi-omics analysis of cellular pathways involved in different rapid growth stages of moso bamboo. Tree Physiology 40:1487−508 doi: 10.1093/treephys/tpaa090
[3] Ramakrishnan M, Yrjälä K, Vinod KK, Sharma A, Cho J, et al. 2020. Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food and Energy Security 9:e229 doi: 10.1002/fes3.229
[4] Choudhury D, Sahu JK, Sharma GD. 2012. Value addition to bamboo shoots: a review. J. Food Sci. Technol. 49:407−14 doi: 10.1007/s13197-011-0379-z
[5] Nirmala C, Bisht MS, Laishram M. 2014. Bioactive compounds in bamboo shoots: health benefits and prospects for developing functional foods. Int. J. Food Sci. Technol. 49:1425−31 doi: 10.1111/ijfs.12470
[6] Xu M, Zhuang S, Gui R. 2017. Soil hypoxia induced by an organic-material mulching technique stimulates the bamboo rhizome up-floating of Phyllostachys praecox. Scientific Reports 7:14353 doi: 10.1038/s41598-017-14798-8
[7] Wang H, Jin X, Jin A, Song W, Chai H, et al. 2011. Growth and culm form of Phyllostachys pubescens with fertilization. J. Zhejiang A&F Univ. 28:741–46 https://zlxb.zafu.edu.cn/en/article/doi/10.11833/j.issn.2095-0756.2011.05.009
[8] Li Q, Song X, Gu H, Gao F. 2016. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations. Scientific Reports 6:28235 doi: 10.1038/srep28235
[9] Li R, Werger MJA, de Kroon H, During HJ, Zhong ZC. 2000. Interactions Between Shoot Age Structure, Nutrient Availability and Physiological Integration in the Giant Bamboo Phyllostachys pubescens. Plant Biology 2:437−46 doi: 10.1055/s-2000-5962
[10] Song X, Gu H, Wang M, Zhou G, Li Q. 2016. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition. Scientific Reports 6:24107 doi: 10.1038/srep24107
[11] Wu W, Liu Q, Zhu Z, Shen Y. 2015. Managing Bamboo for Carbon Sequestration, Bamboo Stem and Bamboo Shoots. Small-Scale Forestry 14:233−43 doi: 10.1007/s11842-014-9284-4
[12] Wang K, Peng H, Lin E, Jin Q, Hua X. et al. 2010. Identification of genes related to the development of bamboo rhizome bud. Journal of Experimental Botany 61:551−61 doi: 10.1093/jxb/erp334
[13] Lan X. 1989. Study on germination and growth of bamboo shoots in Phyllostachys pubescens timber forest. J. Zhejiang For. Coll. 24:42−46
[14] Song X, Peng C, Zhou G, Gu H, Li Q, et al. 2016. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla). Scientific Reports 6:25908 doi: 10.1038/srep25908
[15] Hu C, Jin A, Zhang Z. 1996. Change of endohormone in mixed bud on Lei bamboo rhizome during differentiation. J. Zhejiang For. Coll. 13: 1–4 http://europepmc.org/abstract/cba/288918
[16] Zhang Z, Hu C, Jin A. 1996. Observation of the morphology and the structure of Phyllostachys praecox rhizome lateral bud developing into shoot. Journal of Bamboo Research 15: 60–66 http://europepmc.org/abstract/cba/288888
[17] Huang J, Zhang B, Liu L, Qiu, L. 2002. Dynamic changes of endophytohormones in rhizomal buds of phyllostachys praecox. Scientia Silvae Sinicae 38: 38–41 http://europepmc.org/abstract/cba/382598
[18] Yoshida A, Terada Y, Toriba T, Kose K, Ashikari M, et al. 2016. Analysis of Rhizome Development in Oryza longistaminata, a Wild Rice Species. Plant and Cell Physiology 57:2213−20 doi: 10.1093/pcp/pcw138
[19] Bessho-Uehara K, Nugroho JE, Kondo H, Angeles-Shim RB, Ashikari M. 2018. Sucrose affects the developmental transition of rhizomes in Oryza longistaminata. J. Plant Res. 131:693−707 doi: 10.1007/s10265-018-1033-x
[20] Barrow JR, Lucero ME, Reyes-Vera I, Havstad KM. 2008. Do symbiotic microbes have a role in regulating plant performance and response to stress? Commun. Integr. Biol. 1:69−73 doi: 10.4161/cib.1.1.6238
[21] Waldie T, McCulloch H, Leyser O. 2014. Strigolactones and the control of plant development: lessons from shoot branching. The Plant Journal 79:607−622 doi: 10.1111/tpj.12488
[22] Volkov V, Schwenke H. 2021. A quest for mechanisms of plant root exudation brings new results and models, 300 years after Hales. Plants 10:38 doi: 10.3390/plants10010038
[23] Spaepen S. 2015. Plant Hormones Produced by Microbes. In Principles of Plant-Microbe Interactions, ed. Lugtenberg B. Cham: Springer. pp. 247−56 https://doi.org/10.1007/978-3-319-08575-3_26
[24] Přikryl Z, Vančura V, Wurst M. 1985. Auxin formation by rhizosphere bacteria as a factor of root growth. Biologia Plantarum 27:159−63 doi: 10.1007/BF02902155
[25] Shimizu-Sato S, Mori H. 2001. Control of Outgrowth and Dormancy in Axillary Buds. Plant Physiology 127:1405−13 doi: 10.1104/pp.010841
[26] Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, et al. 2012. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology and Biotechnology 28:1503−9 doi: 10.1007/s11274-011-0952-7
[27] Greene EM. 1980. Cytokinin production by microorganisms. The Botanical Review 46:25−74 doi: 10.1007/BF02860866
[28] Lanfranco L, Fiorilli V, Venice F, Bonfante P. 2018. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J. Exp. Bot. 69:2175−88 doi: 10.1093/jxb/erx432
[29] Tan M, Li G, Chen X, Xing L, Ma J, et al. 2019. Role of Cytokinin, Strigolactone, and Auxin Export on Outgrowth of Axillary Buds in Apple. Frontiers in Plant Science 10:616 doi: 10.3389/fpls.2019.00616
[30] Bertheloot J, Barbier F, Boudon F, Perez-Garcia MD, Péron T, et al. 2020. Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth. New Phytologist 225:866−79 doi: 10.1111/nph.16201
[31] Horvath DP, Anderson JV, Chao WS, Foley ME. 2003. Knowing when to grow: signals regulating bud dormancy. Trends in Plant Science 8:534−40 doi: 10.1016/j.tplants.2003.09.013
[32] Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J. 2009. Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends in Biotechnology 27:591−98 doi: 10.1016/j.tibtech.2009.07.006
[33] Khan AL, Waqas M, Kang S, Al-Harrasi A, Hussain J, et al. 2014. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology 52:689−95 doi: 10.1007/s12275-014-4002-7
[34] Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, et al. 2016. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiology and Biochemistry 106:236−43 doi: 10.1016/j.plaphy.2016.05.006
[35] Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, et al. 2017. Gibberellins Producing Endophytic Fungus Porostereum spadiceum AGH786 Rescues Growth of Salt Affected Soybean. Frontiers in Microbiology 8:686 doi: 10.3389/fmicb.2017.00686
[36] Bishnu Maya KC, Gauchan DP, Khanal SN, Chimouriya S, Lamichhane J. 2021. Amelioration of growth attributes of Bambusa nutans subsp. cupulata Stapleton by indole-3-acetic acid extracted from newly isolated Bacillus mesonae MN511751 from rhizosphere of Bambusa tulda Roxburgh. Biocatalysis and Agricultural Biotechnology 31:101920 doi: 10.1016/j.bcab.2021.101920
[37] Xu Q, Jiang P, Wu J, Zhou G, Shen R, et al. 2015. Bamboo invasion of native broadleaf forest modified soil microbial communities and diversity. Biological Invasions 17:433−44 doi: 10.1007/s10530-014-0741-y
[38] Han J, Xia D, Li L, Sun L, Yang K, et al. 2009. Diversity of Culturable Bacteria Isolated from Root Domains of Moso Bamboo (Phyllostachys edulis). Microbial Ecology 58:363−73 doi: 10.1007/s00248-009-9491-2
[39] Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal 6:1621−24 doi: 10.1038/ismej.2012.8
[40] Wei W, et al. 2012. Analysis of Fusarium populations in a soybean field under different fertilization management by real-time quantitative PCR and denaturing gradient gel electrophoresis. Journal of Plant Pathology 94:119−26 doi: 10.4454/jpp.fa.2012.006
[41] Adams RI, Miletto M, Taylor JW, Bruns TD. 2013. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME Journal 7:1262−73 doi: 10.1038/ismej.2013.28
[42] Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537−41 doi: 10.1128/AEM.01541-09
[43] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335−36 doi: 10.1038/nmeth.f.303
[44] Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10:996−98 doi: 10.1038/nmeth.2604
[45] Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261−67 doi: 10.1128/AEM.00062-07
[46] Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biology 12:R60 doi: 10.1186/gb-2011-12-6-r60
[47] White LJ, Brözel V, Subramanian S. 2015. Isolation of Rhizosphere Bacterial Communities from Soil. Bio-protocol 5:e1569 doi: 10.21769/BioProtoc.1569
[48] Bretz F, Hothorn T, Westfall P. 2010. Multiple Comparisons Using R. New York: Chapman and Hall/CRC. 205 pp. https://doi.org/10.1201/9781420010909.
[49] Cui F, Wu W, Wang K, Zhang Y, Hu Z, et al. 2019. Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. Journal of Experimental Botany 70:5971−84 doi: 10.1093/jxb/erz345
[50] Chen S, Zheng Z, Huang P. 2011. Sustainable Development for Bamboo Industry in Anji, Zhejiang Province of China. Research Journal of Environmental Sciences 5:279−87 doi: 10.3923/rjes.2011.279.287
[51] Jurat-Fuentes JL, Jackson TA. 2012. Bacterial Entomopathogens. In Insect Pathology (Second Edition), eds. Vega FE, Kaya HK. San Diego: Academic Press, Elsevier. pp. 265–349. https://doi.org/10.1016/B978-0-12-384984-7.00008-7.
[52] Wang Y, Chandler C. 2016. Candidate pathogenicity islands in the genome of 'Candidatus Rickettsiella isopodorum', an intracellular bacterium infecting terrestrial isopod crustaceans. PeerJ 4:e2806 doi: 10.7717/peerj.2806
[53] Kaur C, Selvakumar G, Ganeshamurthy AN. 2017. Burkholderia to Paraburkholderia: The Journey of a Plant-Beneficial-Environmental Bacterium. In Recent advances in Applied Microbiology, ed. Shukla P. Singapore: Springer. pp. 213–28 https://doi.org/10.1007/978-981-10-5275-0.
[54] Patel K, Goswami D, Dhandhukia P, Thakker J 2015. Techniques to Study Microbial Phytohormones. In Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, ed. Maheshwari DK, vol12: XI, 390. Cham: Springer. pp. 1–27 https://doi.org/10.1007/978-3-319-24654-3_1.
[55] Lawson PA, Llop-Perez P, Hutson RA, Hippe H, Collins MD. 1993. Towards a phylogeny of the clostridia based on 16S rRNA sequences. FEMS Microbiology Letters 113:87−92 doi: 10.1111/j.1574-6968.1993.tb06493.x
[56] Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, et al. 1994. The Phylogeny of the Genus Clostridium: Proposal of Five New Genera and Eleven New Species Combinations. International Journal of Systematic Bacteriology 44:812−26 doi: 10.1099/00207713-44-4-812
[57] Gupta RS, Gao B. 2009. Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I). International Journal of Systematic and Evolutionary Microbiology 59:285−94 doi: 10.1099/ijs.0.001792-0
[58] Cavaletti L, Monciardini P, Bamonte R, Schumann P, Rohde M, et al. 2006. New Lineage of Filamentous, Spore-Forming, Gram-Positive Bacteria from Soil. Appl. Environ. Microbiol. 72:4360−69 doi: 10.1128/AEM.00132-06
[59] Yabe S, Sakai Y, Abe K, Yokota A. 2017. Diversity of Ktedonobacteria with Actinomycetes-Like Morphology in Terrestrial Environments. Microbes and Environments. 32:61−70 doi: 10.1264/jsme2.ME16144
[60] Zheng Y, Saitou A, Wang CM, Toyoda A, Minakuchi Y, et al. 2019. Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria. Frontiers in Microbiology 10:839 doi: 10.3389/fmicb.2019.00893
[61] Vurukonda SSKP, Giovanardi D, Stefani E. 2018. Plant Growth Promoting and Biocontrol Activity of Streptomyces spp. as Endophytes. International Journal of Molecular Sciences 19:952 doi: 10.3390/ijms19040952
[62] Rachmania MK, Ningsih F, Sakai Y, Yabe S, Yokota A, et al. 2020. Isolation and identification of Ktedonobacteria using 16S rRNA gene sequences data. IOP Conference Series: Earth and Environmental Science 439:012031 doi: 10.1088/1755-1315/439/1/012031
[63] Zhang X, Gao G, Wu Z, Wen X, Zhong H, et al. 2019. Agroforestry alters the rhizosphere soil bacterial and fungal communities of moso bamboo plantations in subtropical China. Appl. Soil Ecol. 143:192−200 doi: 10.1016/j.apsoil.2019.07.019
[64] Suárez-Moreno ZR, Caballero-Mellado J, Venturi V. 2008. The new group of non-pathogenic plant-associated nitrogen-fixing Burkholderia spp. shares a conserved quorum-sensing system, which is tightly regulated by the RsaL repressor. Microbiology 154:2048−59 doi: 10.1099/mic.0.2008/017780-0
[65] Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J. 2009. ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase Activity, a Widespread Trait in Burkholderia Species, and Its Growth-Promoting Effect on Tomato Plants. Appl. Environ. Microbiol. 75:6581−90 doi: 10.1128/AEM.01240-09
[66] Poupin MJ, TimmermannT, VegaA, Zuñiga A, González B. 2013. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLOS ONE 8:e69435 doi: 10.1371/journal.pone.0069435
[67] Wingler A. 2015. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature. Front. Plant Sci. 5:794 doi: 10.3389/fpls.2014.00794
[68] Yang X, Kalluri UC, Jawdy S, Gunter LE, Yin T, et al. 2008. The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. Plant Physiol. 148:1189−200 doi: 10.1104/pp.108.121921
[69] Li J, Pan B, Niu L, Chen M, Tang M, et al. 2018. Gibberellin inhibits floral initiation in the perennial woody plant Jatropha curcas. J. Plant Growth Regul. 37:999−1006 doi: 10.1007/s00344-018-9797-8
[70] Burg SP, Burg EA. 1968. Ethylene Formation in Pea Seedlings; Its Relation to the Inhibition of Bud Growth Caused by Indole-3-Acetic Acid. Plant Physiol. 43:1069−74 doi: 10.1104/pp.43.7.1069
[71] Coleman WK. 1998. Carbon Dioxide, Oxygen and Ethylene Effects on Potato Tuber Dormancy Release and Sprout Growth. Ann. Bot. 82:21−27 doi: 10.1006/anbo.1998.0645
[72] Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, et al. 2009. Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol. Biol. 71:403 doi: 10.1007/s11103-009-9531-9
[73] Qian C, Wang J, Dong S, Yin H, Burke C, et al. 2018. Human influence on the record-breaking cold event in January of 2016 in Eastern China. American Meteorological Society 99:S118−S122 doi: 10.1175/bams-d-17-0095.1
[74] Rinne P, Hanninen H, Kaikuranta P, Jalonen JE, Repo T. 1997. Freezing exposure releases bud dormancy in Betula pubescens and B. pendula. Plant Cell Environ. 20:1199−204 doi: 10.1046/j.1365-3040.1997.d01-148.x
[75] Cook NC, Bellen A, Cronjé PJR, Wit ID, Keulemans W, et al. 2005. Freezing temperature treatment induces bud dormancy in 'Granny Smith' apple shoots. Sci. Hortic. 106:170−176 doi: 10.1016/j.scienta.2005.03.009
[76] Nanninga C, Buyarski CR, Pretorius AM, Montgomery RA. 2017. Increased exposure to chilling advances the time to budburst in North American tree species. Tree Physiol. 37:1727−38 doi: 10.1093/treephys/tpx136
[77] Peterson D, Peterson N, Stecher G, Nei M, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731−2739 doi: 10.1093/molbev/msr121