[1] Kang JH, Shi F, Jones AD, Marks MD, Howe GA. 2010. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. Journal of Experimental Botany 61:1053−64 doi: 10.1093/jxb/erp370
[2] Kang JH, Campos ML, Zemelis-Durfee S, Al-Haddad JM, Jones AD, et al. 2016. Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue. Journal of Experimental Botany 67:5313−24 doi: 10.1093/jxb/erw292
[3] Levin DA. 1973. The role of trichomes in plant defense. The Quarterly Review of Biology 48:3−15 doi: 10.1086/407484
[4] Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S, et al. 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. The Plant Cell 25:3117−32 doi: 10.1105/tpc.113.115139
[5] Werker E. 2000. Trichome diversity and development. Adv Bot Res 31:1−35 doi: 10.1016/S0065-2296(00)31005-9
[6] Barba P, Loughner R, Wentworth K, Nyrop JP, Loeb GM, et al. 2019. A QTL associated with leaf trichome traits has a major influence on the abundance of the predatory mite Typhlodromus pyri in a hybrid grapevine population. Horticulture Research 6:87 doi: 10.1038/s41438-019-0169-8
[7] Calo L, García I, Gotor C, Romero LC. 2006. Leaf hairs influence phytopathogenic fungus infection and confer an increased resistance when expressing a Trichoderma α-1,3-glucanase. Journal of Experimental Botany 57:3911−20 doi: 10.1093/jxb/erl155
[8] Ma D, Hu Y, Yang C, Liu B, Fang L, et al. 2016. Genetic basis for glandular trichome formation in cotton. Nature Communications 7:10456 doi: 10.1038/ncomms10456
[9] Xue S, Dong M, Liu X, Xu S, Pang J, et al. 2019. Classification of fruit trichomes in cucumber and effects of plant hormones on type II fruit trichome development. Planta 249:407−16 doi: 10.1007/s00425-018-3004-9
[10] Chen C, Yin S, Liu X, Liu B, Yang S, et al. 2016. The WD-repeat protein CsTTG1 regulates fruit wart formation through interaction with the homeodomain leucine zipper I protein Mict. Plant Physiology 171:1156−68 doi: 10.1104/pp.16.00112
[11] Li Q, Cao C, Zhang C, Zheng S, Wang Z, et al. 2015. The identification of Cucumis sativus Glabrous1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene. Journal of Experimental Botany 66:2515−26 doi: 10.1093/jxb/erv046
[12] Pan Y, Bo K, Cheng Z, Weng YQ. 2015. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biology 15:302 doi: 10.1186/s12870-015-0693-0
[13] Yang S, Cai Y, Liu X, Dong M, Zhang Y, et al. 2018. A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber. Journal of Experimental Botany 69:1887−902 doi: 10.1093/jxb/ery047
[14] Chang J, Xu Z, Li M, Yang M, Qin H, et al. 2019. Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato. PLoS Genetics 15:e1008438 doi: 10.1371/journal.pgen.1008438
[15] Luckwill LC. 1943. The genus Lycopersicon: A historical, biological and taxonomic survey of the wild and cultivated tomatoes. PhD thesis. Aberdeen Univ, Aberdeen, UK.
[16] Yang C, Li H, Zhang J, Luo Z, Gong P, et al. 2011. A regulatory gene induces trichome formation and embryo lethality in tomato. PNAS 108:11836−41 doi: 10.1073/pnas.1100532108
[17] Chang J, Yu T, Yang Q, Li C, Xiong C, et al. 2018. Hair, encoding a single C2H2 zinc-finger protein, regulates multicellular trichome formation in tomato. The Plant Journal 96:90−102 doi: 10.1111/tpj.14018
[18] Hua B, Chang J, Wu M, Xu Z, Zhang F, et al. 2020. Mediation of JA signalling in glandular trichomes by the woolly/SlMYC1 regulatory module improves pest resistance in tomato. Plant Biotechnology Journal 19:375−93 doi: 10.1111/pbi.13473
[19] Xu J, van Herwijnen ZO, Dräger DB, Sui C, Haring MA, et al. 2018. SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato glandular cells. The Plant Cell 30:2988−3005 doi: 10.1105/tpc.18.00571
[20] Hua B, Chang J, Xu Z, Han X, Xu M, et al. 2021. HOMEODOMAIN PROTEIN8 mediates jasmonate-triggered trichome elongation in tomato. New Phytologist 230:1063−77 doi: 10.1111/nph.17216
[21] Xie Q, Gao Y, Li J, Yang Q, Qu X, et al. 2020. The HD-Zip IV transcription factor SlHDZIV8 controls multicellular trichome morphology by regulating the expression of Hairless-2. Journal of Experimental Botany 71:7132−45 doi: 10.1093/jxb/eraa428
[22] Chen Y, Su D, Li J, Ying S, Deng H, et al. 2020. Overexpression of bHLH95, a basic helix-loop-helix transcription factor family member, impacts trichome formation via regulating gibberellin biosynthesis in tomato. Journal of Experimental Botany 71:3450−62 doi: 10.1093/jxb/eraa114
[23] Vendemiatti E, Zsögön A, Silva GFFe, de Jesus FA, Cutri L, et al. 2017. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. Plant Science 259:35−47 doi: 10.1016/j.plantsci.2017.03.006
[24] Schilmiller AL, Miner DP, Larson M, McDowell E, Gang DR, et al. 2010. Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics. Plant Physiology 153:1212−23 doi: 10.1104/pp.110.157214
[25] Schilmiller AL, Charbonneau AL, Last RL. 2012. Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. PNAS 109:16377−82 doi: 10.1073/pnas.1207906109
[26] Simmons, AT. Gurr, GM. 2005. Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agricultural and Forest Entomology 7:265−76 doi: 10.1111/j.1461-9555.2005.00271.x
[27] Melaragno JE, Mehrotra B, Coleman AW. 1993. Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. The Plant Cell 5(11):1661−68 doi: 10.2307/3869747
[28] Bergau N, Navarette Santos A, Henning A, Balcke GU, Tissier A. 2016. Autofluorescence as a signal to sort developing glandular trichomes by flow cytometry. Frontiers in Plant Science 7:949 doi: 10.3389/fpls.2016.00949
[29] Yang C, Ye Z. 2013. Trichomes as models for studying plant cell differentiation. Cellular and Molecular Life Sciences 70:1937−1948 doi: 10.1007/s00018-012-1147-6
[30] Jongedijk E, Müller S, van Dijk ADJ, Schijlen E, Champagne A, et al. 2020. Novel routes towards bioplastics from plants: Elucidation of the methylperillate biosynthesis pathway from Salvia dorisiana trichomes. Journal of Experimental Botany 71:3052−65 doi: 10.1093/jxb/eraa086
[31] Markus Lange B, Turner GW. 2013. Terpenoid biosynthesis in trichomes—current status and future opportunities. Plant Biotechnology Journal 11:2−22 doi: 10.1111/j.1467-7652.2012.00737.x
[32] Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, et al. 2012. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences 13:17077−103 doi: 10.3390/ijms131217077
[33] Sarria E, Palomares-Rius FJ, López-Sesé AI, Heredia A, Gómez-Guillamón ML. 2010. Role of leaf glandular trichomes of melon plants in deterrence of Aphis gossypii Glover. Plant Biology 12:503−11 doi: 10.1111/j.1438-8677.2009.00239.x
[34] Powell AE, Lenhard M. 2012. Control of organ size in plants. Current Biology 22:R360−R367 doi: 10.1016/j.cub.2012.02.010
[35] Tsukaya H. 2006. Mechanism of leaf-shape determination. Annual Review of Plant Biology 57:477−96 doi: 10.1146/annurev.arplant.57.032905.105320
[36] Churchman ML, Brown ML, Kato N, Kirik V, Hülskamp M, et al. 2006. SIAMESE, a Plant-Specific Cell Cycle Regulator, Controls Endoreplication Onset in Arabidopsis thaliana. The Plant Cell 18:3145−57 doi: 10.1105/tpc.106.044834
[37] Tissier A, Morgan JA, Dudareva N. 2017. Plant Volatiles: Going 'In' but not 'Out' of Trichome Cavitie. Trends in plant science 22:930−38 doi: 10.1016/j.tplants.2017.09.001
[38] Balcke GU, Bennewitz S, Bergau N, Athmer B, Henning A, et al. 2017. Multi-omics of tomato glandular trichomes reveals distinct features of central carbon metabolism supporting high productivity of specialized metabolites. Plant Cell 29:960−83 doi: 10.1105/tpc.17.00060