[1] Wang H, Tang L, Zhang L, Li C. 2019. Change of extreme chilling and its impact on winter planting in Guangdong Province, China. The Journal of Applied Ecology 30:4186−94 doi: 10.13287/j.1001-9332.201912.019
[2] Zhu J, Dong C, Zhu J. 2007. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Current Opinion in Plant Biology 10:290−95 doi: 10.1016/j.pbi.2007.04.010
[3] Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, et al. 2008. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiology 148:1094−105 doi: 10.1104/pp.108.122945
[4] Liu C, Wang W, Mao B, Chu C. 2018. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects. Yi chuan (Hereditas) 40:171−85 doi: 10.16288/j.yczz.18-007
[5] Meng X, Zhang S. 2013. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology 51:245−66 doi: 10.1146/annurev-phyto-082712-102314
[6] Taj G, Agarwal P, Grant M, Kumar A. 2010. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signaling & Behavior 5:1370−78 doi: 10.4161/psb.5.11.13020
[7] Nakagami H, Pitzschke A, Hirt H. 2005. Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science 10:339−46 doi: 10.1016/j.tplants.2005.05.009
[8] Xu J, Zhang S. 2015. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science 20:56−64 doi: 10.1016/j.tplants.2014.10.001
[9] MAPK Group (Ichimura K et al.), Ichimura K, Shinozaki K, Tena G, Sheen J, et al. 2002. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science 7:301−8 doi: 10.1016/S1360-1385(02)02302-6
[10] Kong Q, Qu N, Gao M, Zhang Z, Ding X, et al. 2012. The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis. The Plant Cell 24:2225−36 doi: 10.1105/tpc.112.097253
[11] Li H, Ding Y, Shi Y, Zhang X, Zhang S, et al. 2017. MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis. Developmental Cell 43:630−42 doi: 10.1016/j.devcel.2017.09.025
[12] Zhao C, Wang P, Si T, Hsu CC, Wang L, et al. 2017. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability. Developmental Cell 43:618−29 doi: 10.1016/j.devcel.2017.09.024
[13] Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, et al. 2004. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell 15:141−52 doi: 10.1016/j.molcel.2004.06.023
[14] Zhang Z, Li J, Li F, Liu H, Yang W, et al. 2017. OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance. Molecular Cell 43:731−43 doi: 10.1016/j.devcel.2017.11.016
[15] Yao W, Wang L, Zhou B, Wang S, Li R, et al. 2016. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco. Journal of Plant Physiology 198:23−31 doi: 10.1016/j.jplph.2016.03.015
[16] Tian Y, Zhang H, Pan X, Chen X, Zhang Z, et al. 2011. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Research 20:857−66 doi: 10.1007/s11248-010-9463-9
[17] Hu Z, Huang X, Amombo E, Liu A, Fan J, et al. 2020. The ethylene responsive factor CdERF1 from bermudagrass (Cynodon dactylon) positively regulates cold tolerance. Plant Science 294:110432 doi: 10.1016/j.plantsci.2020.110432
[18] Illgen S, Zintl S, Zuther E, Hincha DK, Schmülling T. 2020. Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress. Plant Molecular Biology 103:303−20 doi: 10.1007/s11103-020-00993-1
[19] Bolt S, Zuther E, Zintl S, Hincha DK, Schmülling T. 2017. ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant, Cell & Environment 40:108−20 doi: 10.1111/pce.12838
[20] Sun X, Zhang L, Wong DCJ, Wang Y, Zhu Z, et al. 2019. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance. The Plant Journal 99:988−1002 doi: 10.1111/tpj.14378
[21] Lu J, Ju H, Zhou G, Zhu C, Erb M, et al. 2011. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. The Plant Journal 68:583−96 doi: 10.1111/j.1365-313X.2011.04709.x
[22] Chen T, Lou A. 2019. Phylogeography and paleodistribution models of a widespread birch (Betula platyphylla Suk.) across East Asia: Multiple refugia, multidirectional expansion, and heterogeneous genetic pattern. Ecology and Evolution 9:7792−807 doi: 10.1002/ece3.5365
[23] Zhang H, Li F, Dong L, Liu Q. 2017. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors. The Journal of Applied Ecology 28:1851−59 doi: 10.13287/j.1001-9332.201706.009
[24] Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10:R25 doi: 10.1186/gb-2009-10-3-r25
[25] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, et al. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14:R36 doi: 10.1186/gb-2013-14-4-r36
[26] Li X, Gunasekara C, Guo Y, Zhang H, Lei L, et al. 2014. Pop's Pipes: poplar gene expression data analysis pipelines. Tree Genetics & Genomes 10:1093−101 doi: 10.1007/s11295-014-0745-x
[27] Wei H. 2019. Construction of a hierarchical gene regulatory network centered around a transcription factor. Briefings in Bioinformatics 20:1021−31 doi: 10.1093/bib/bbx152
[28] Ji X, Wang L, Nie X, He L, Zang D, et al. 2014. A novel method to identify the DNA motifs recognized by a defined transcription factor. Plant Molecular Biology 86:367−80 doi: 10.1007/s11103-014-0234-5
[29] Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. 1996. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. PNAS 93:11274−79 doi: 10.1073/pnas.93.20.11274
[30] Kong X, Pan J, Zhang M, Xing X, Zhou Y, et al. 2011. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant, Cell & Environment 34:1291−303 doi: 10.1111/j.1365-3040.2011.02329.x
[31] Lv K, Li J, Zhao K, Chen S, Wei H. 2019. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. Plant Science 292:110375 doi: 10.1016/j.plantsci.2019.110375
[32] Yang Y, Liu J, Zhou X, Liu S, Zhuang Y. 2020. Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant. PeerJ 8:e8777 doi: 10.7717/peerj.8777
[33] An J, Li R, Qu F, You C, Wang X, et al. 2018. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. The Plant Journal 96:562−77 doi: 10.1111/tpj.14050
[34] Xu W, Zhang N, Jiao Y, Li R, Xiao D, et al. 2014. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Molecular Biology Reports 41:5329−42 doi: 10.1007/s11033-014-3404-2
[35] Wang J, Guo J, Zhang Y, Yan X. 2020. Integrated transcriptomic and metabolomic analyses of yellow horn (Xanthoceras sorbifolia) in response to cold stress. PloS one 15:e0236588 doi: 10.1371/journal.pone.0236588
[36] Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. 2006. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinformatics 7:S7 doi: 10.1186/1471-2105-7-s1-s7
[37] Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, et al. 2014. Ethylene Response Factor Sl-ERF.B.3 Is Responsive to Abiotic Stresses and Mediates Salt and Cold Stress Response Regulation in Tomato. The Scientific World Journal 2014:167681 doi: 10.1155/2014/167681
[38] Zhao J, Li W, Guo C, Shu Y. 2018. Genome-wide analysis of AP2/ERF transcription factors in zoysiagrass, Zoysia japonica. Biotechnology & Biotechnological Equipment 32:303−8 doi: 10.1080/13102818.2017.1418677
[39] Furuya T, Matsuoka D, Nanmori T. 2013. Phosphorylation of Arabidopsis thaliana MEKK1 via Ca2+ signaling as a part of the cold stress response. Journal of Plant Research 126:833−40 doi: 10.1007/s10265-013-0576-0
[40] Zhai Y, Shao S, Sha W, Zhao Y, Zhang J, et al. 2017. Overexpression of soybean GmERF9 enhances the tolerance to drought and cold in the transgenic tobacco. Plant Cell, Tissue and Organ Culture (PCTOC) 128:607−18 doi: 10.1007/s11240-016-1137-8
[41] Chujo T, Takai R, Akimoto-Tomiyama C, Ando S, Minami E, et al. 2007. Involvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1769:497−505 doi: 10.1016/j.bbaexp.2007.04.006
[42] Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z. 2013. Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biology 13:229 doi: 10.1186/1471-2229-13-229
[43] Ren C, Zhu Q, Gao B, Ke S, Yu W, et al. 2008. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling. Journal of Integrative Plant Biology 50:630−37 doi: 10.1111/j.1744-7909.2008.00653.x
[44] Xie G, Kato H, Imai R. 2012. Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. The Biochemical Journal 443:95−102 doi: 10.1042/BJ20111792
[45] Shen H, Liu C, Zhang Y, Meng X, Zhou X, et al. 2012. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Molecular Biology 80:241−53 doi: 10.1007/s11103-012-9941-y
[46] Han J, Wang P, Wang Q, Lin Q, Chen Z, et al. 2020. Genome-Wide Characterization of DNase I-Hypersensitive Sites and Cold Response Regulatory Landscapes in Grasses. The Plant Cell 32:2457−73 doi: 10.1105/tpc.19.00716
[47] Van den Broeck L, Dubois M, Vermeersch M, Storme V, Matsui M, et al. 2017. From network to phenotype: the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress. Molecular Systems Biology 13:961 doi: 10.15252/msb.20177840
[48] Sun Y, Yu D. 2015. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. Plant Cell Reports 34:1295−306 doi: 10.1007/s00299-015-1787-8
[49] Chen J, Nolan TM, Ye H, Zhang M, Tong H, et al. 2017. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses. The Plant Cell 29:1425−39 doi: 10.1105/tpc.17.00364
[50] Chang H, Tsai MC, Wu SS, Chang IF. 2019. Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana. Botanical Studies 60:16 doi: 10.1186/s40529-019-0264-z
[51] Chang CYY, Bräutigam K, Hüner NPA, Ensminger I. 2021. Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers. New Phytologist 229:675−91 doi: 10.1111/nph.16904
[52] Soltész A, Smedley M, Vashegyi I, Galiba G, Harwood W, et al. 2013. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. Journal of Experimental Botany 64:1849−62 doi: 10.1093/jxb/ert050
[53] You J, Chan Z. 2015. ROS Regulation During Abiotic Stress Responses in Crop Plants. Frontiers in Plant Science 6:1092 doi: 10.3389/fpls.2015.01092
[54] Mao J, Miao Z, Wang Z, Yu L, Cai X, et al. 2016. Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression. PLoS Genet. 12:e1005760 doi: 10.1371/journal.pgen.1005760
[55] Cheng M, Liao P, Kuo W, Lin T. 2013. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology 162:1566−82 doi: 10.1104/pp.113.221911
[56] Lestari R, Rio M, Martin F, Leclercq J, Woraathasin N, et al. 2018. Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth and tolerance to abiotic stress and affects laticifer differentiation. Plant Biotechnology Journal 16:322−36 doi: 10.1111/pbi.12774
[57] Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, et al. 2012. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. The Plant Cell 24:2515−27 doi: 10.1105/tpc.112.099119
[58] Wei M, Liu Q, Wang Z, Yang J, Li W, et al. 2020. PuHox52-mediated hierarchical multilayered gene regulatory network promotes adventitious root formation in Populus ussuriensis. New Phytologist 228:1369−85 doi: 10.1111/nph.16778
[59] Wei H, Yordanov YS, Georgieva T, Li X, Busov V. 2013. Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. New Phytologist 200:483−97 doi: 10.1111/nph.12375
[60] D'Haeseleer K, Den Herder G, Laffont C, Plet J, Mortier V, et al. 2011. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots. New Phytologist 191:647−61 doi: 10.1111/j.1469-8137.2011.03719.x
[61] Chen S, Wang Y, Yu L, Zheng T, Wang S, et al. 2021. Genome sequence and evolution of Betula platyphylla. Horticulture Research 8:37 doi: 10.1038/s41438-021-00481-7
[62] Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11:113−16 doi: 10.1007/BF02670468
[63] Weigel D, Glazebrook J. 2006. Transformation of Agrobacterium Using the Freeze-Thaw Method. CSH Protocols 2006:pdb.prot4666 doi: 10.1101/pdb.prot4666
[64] Weigel D, Glazebrook J. 2002. Arabidopsis : a laboratory manual. In Genetical Research, 80:354. NY: Cold Spring Harbor Laboratory Press. pp. 77
[65] Pečenková T, Pleskot R, Žárský V. 2017. Subcellular Localization of Arabidopsis Pathogenesis-Related 1 (PR1) Protein. International Journal of Molecular Sciences 18:825 doi: 10.3390/ijms18040825
[66] Wang Y, Gao C, Liang Y, Wang C, Yang C, et al. 2010. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. Journal of Plant Physiology 167:222−30 doi: 10.1016/j.jplph.2009.09.008
[67] Lv K, Wei H, Jiang J. 2020. Overexpression of BplERD15 enhances drought tolerance in Betula platyphylla Suk. Forests 11:978 doi: 10.3390/f11090978
[68] Li W, Lin Y, Li Q, Shi R, Lin C, et al. 2014. A robust chromatin immunoprecipitation protocol for studying transcription factor-DNA interactions and histone modifications in wood-forming tissue. Nature Protocols 9:2180−93 doi: 10.1038/nprot.2014.146