[1] Thomas H. 2013. Senescence, ageing and death of the whole plant. New Phytologist 197:696−711 doi: 10.1111/nph.12047
[2] Ladizinsky G. 1998. Plant evolution under domestication. X, 254. Dordrecht: Springer. https://doi.org/10.1007/978-94-011-4429-2
[3] Bastias A, Almada R and Rojas P, Donoso JM, Hinrichsen P, et al. 2016. Aging gene pathway of microRNAs 156/157 and 172 is altered in juvenile and adult plants from in vitro propagated Prunus sp. Ciencia e Investigación Agraria 43:429−41 doi: 10.4067/S0718-16202016000300009
[4] Wang J. 2014. Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany 65:4723−30 doi: 10.1093/jxb/eru246
[5] Wang J, Czech B, Weigel D. 2009. MiR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738−49 doi: 10.1016/j.cell.2009.06.014
[6] Chen L, Xiang S, Chen Y, Li D, Yu D. 2017. Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate Age-Triggered leaf senescence. Molecular Plant 10:1174−89 doi: 10.1016/j.molp.2017.07.008
[7] Guo Y and Gan S. 2006. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. The Plant Journal 46:601−12 doi: 10.1111/j.1365-313X.2006.02723.x
[8] Besseau S, Li J and Palva ET. 2012. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany 63:2667−79 doi: 10.1093/jxb/err450
[9] Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. 2008. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135:1991−99 doi: 10.1242/dev.016873
[10] Wang L, Cui J, Jin B, Zhao J, Xu H, et al. 2020. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. PNAS 117:2201−10 doi: 10.1073/pnas.1916548117
[11] Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P. 2004. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). The Plant Journal 40:546−557 doi: 10.1111/j.1365-313X.2004.02226.x
[12] Xiang W, Li W, Zhang S, Qi L. 2019. Transcriptome-wide analysis to dissect the transcription factors orchestrating the phase change from vegetative to reproductive development in Larix kaempferi. Tree Genetics & Genomes 15:68 doi: 10.1007/s11295-019-1376-z
[13] Katahata SI, Futamura N, Igasaki T, Shinohara K. 2014. Functional analysis of SOC1-like and AGL6-like MADS-box genes of the gymnosperm Cryptomeria japonica. Tree Genet Genomes. 10:317−27 doi: 10.1007/s11295-013-0686-9
[14] Wendling I, Trueman SJ, Xavier A. 2014. Maturation and related aspects in clonal forestry—part II: Reinvigoration, rejuvenation and juvenility maintenance. New Forests 45:473−86 doi: 10.1007/s11056-014-9415-y
[15] Zhang Y, Zang Q, Qi L, Han S, Li W. 2020. Effects of Cutting, Pruning, and Grafting on the Expression of Age-Related Genes in Larix kaempferi. Forests 11:218 doi: 10.3390/f11020218
[16] Ma J, Chen X, Song Y, Zhang G, Zhou X, et al. 2021. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. Plant Physiology 0:kiab250 doi: 10.1093/plphys/kiab250
[17] Ciacka K, Tymiński M, Gniazdowska A, Krasuska U. 2020. Carbonylation of proteins—an element of plant ageing. Planta 252:12 doi: 10.1007/s00425-020-03414-1
[18] Chang E, Zhang J, Yao X, Tang S, Zhao X, et al. 2019. De novo Characterization of the Platycladus orientalis Transcriptome and Analysis of Photosynthesis-Related Genes during Aging. Forests 10:393 doi: 10.3390/f10050393
[19] Zhang S, Zhang L, Chai Y, Wang F, Li Y, et al. 2015. Physiology and proteomics research on the leaves of ancient Platycladus orientalis (L.) during winter. Journal of Proteomics 126:263−78 doi: 10.1016/j.jprot.2015.06.019
[20] Huang LC, Pu SY, Murashige T, Fu SF, Kuo TT, et al. 2003. Phase- and Age-Related differences in protein tyrosine phosphorylation insequoia sempervirens. Biologia Plantarum 47:601−3 doi: 10.1023/B:BIOP.0000041070.08300.63
[21] Artemkina NA, Orlova MA, Lukina NV. 2019. Spatial variation in the concentration of phenolic compounds and nutritional elements in the needles of spruce in northern taiga forests. Contemporary Problems of Ecology 12:769−79 doi: 10.1134/S1995425519070023
[22] Woo HR, Koo HJ, Kim J, Jeong H, Yang JO, et al. 2016. Programming of plant leaf senescence with temporal and Inter-Organellar coordination of transcriptome in Arabidopsis. Plant Physiology 171:452−67 doi: 10.1104/pp.15.01929
[23] Wang YQ, Melzer R, Theißen G. 2010. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of 'floral quartets'. The Plant Journal 64:177−90 doi: 10.1111/j.1365-313X.2010.04325.x
[24] Cui Y, Zhang X, Yu M, Zhu Y, Xing J, et al. 2019. Techniques for detecting protein-protein interactions in living cells: Principles, limitations, and recent progress. Science China Life Sciences 62:619−32 doi: 10.1007/s11427-018-9500-7
[25] Weimann M, Grossmann A, Woodsmith J, Özkan Z, Birth P, et al. 2013. A Y2H-seq approach defines the human protein methyltransferase interactome. Nature Methods 10:339−42 doi: 10.1038/nmeth.2397
[26] Li SM, Armstrong CM, Bertin N, Ge H, Milstein S, et al. 2004. A map of the interactome network of the metazoan C. elegans. Science 303:540−43 doi: 10.1126/science.1091403
[27] Erffelinck ML, Ribeiro B, Perassolo M, Pauwels L, Pollier J, et al. 2018. A user-friendly platform for yeast two-hybrid library screening using next generation sequencing. PLoS ONE. 13:e0201270 doi: 10.1371/journal.pone.0201270
[28] Xia J, Wang Q, Jia P, Wang B, Pao W, et al. 2012. NGS catalog: A database of next generation sequencing studies in humans. Human Mutation 33:E2341−E2355 doi: 10.1002/humu.22096
[29] Shindo S, Ito M, Ueda K, Kato M, Hasebe M. 1999. Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evolution and Development 1:180−90 doi: 10.1046/j.1525-142x.1999.99024.x
[30] Chen J, Zhu X, Ren J, Qiu K, Li Z, et al. 2017. Suppressor of overexpression of CO 1 negatively regulates Dark-Induced leaf degreening and senescence by directly repressing pheophytinase and other Senescence-Associated genes in Arabidopsis. Plant Physiology 173:1881−91 doi: 10.1104/pp.16.01457
[31] Kimura Y, Aoki S, Ando E, Kitatsuji A, Watanabe A, et al. 2015. A flowering integrator, SOC1, affects stomatal opening in Arabidopsis thaliana. Plant and Cell Physiology 56:640−49 doi: 10.1093/pcp/pcu214
[32] Jung JH, Ju Y, Seo PJ, Lee JH, Park CM. 2012. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. The Plant Journal 69:577−88 doi: 10.1111/j.1365-313X.2011.04813.x
[33] Dorca-Fornell C, Gregis V, Grandi V, Coupland G, Colombo L, et al. 2011. The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. The Plant Journal 67:1006−17 doi: 10.1111/j.1365-313X.2011.04653.x
[34] Lee J, Oh M, Park H, Lee I. 2008. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. The Plant Journal 55:832−43 doi: 10.1111/j.1365-313X.2008.03552.x
[35] Zhao P, Miao Z, Zhang J, Chen S, Liu Q, et al. 2020. Arabidopsis MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement. Journal of Experimental Botany 71:6092−106 doi: 10.1093/jxb/eraa303
[36] Hu J, Zhou Y, He F, Dong X, Liu L, et al. 2014. MiR824-Regulated AGAMOUS-LIKE16 contributes to flowering time repression in Arabidopsis. The Plant Cell 26:2024−37 doi: 10.1105/tpc.114.124685
[37] Andrés F, Porri A, Torti S, Mateos J, Romera-Branchat M, et al. 2014. SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. PNAS 111:E2760−E2769 doi: 10.1073/pnas.1409567111
[38] Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, et al. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development 21:397−402 doi: 10.1101/gad.1518407
[39] Kim JH, Woo HR, Kim J, Lim PO, Lee IC, et al. 2009. Trifurcate Feed-Forward regulation of Age-Dependent cell death involving miR164 in Arabidopsis. Science 323:1053−57 doi: 10.1126/science.1166386
[40] You Y, Zhai Q, An C, Li C. 2019. LEUNIG_HOMOLOG mediates MYC2-Dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. The Plant Cell 31:2187−205 doi: 10.1105/tpc.19.00115
[41] Mao Y, Liu Y, Chen D, Chen F, Fang X, et al. 2017. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nature Communications 8:13925 doi: 10.1038/ncomms13925
[42] Jin H, Zhu Z. 2017. Temporal and spatial view of jasmonate signaling. Trends in Plant Science 22:451−54 doi: 10.1016/j.tplants.2017.04.001
[43] Kim H, Kim Y, Yeom M, Lim J, Nam HG. 2016. Age-associated circadian period changes in Arabidopsis leaves. Journal of Experimental Botany 67:2665−2673 doi: 10.1093/jxb/erw097
[44] Stahle MI, Kuehlich J, Staron L, von Arnim AG, Golz JF. 2009. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. The Plant Cell 21:3105−18 doi: 10.1105/tpc.109.070458
[45] Conner J, Liu Z. 2000. LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. PNAS 97:12902−7 doi: 10.1073/pnas.230352397
[46] Brioudes F, Joly C, Szécsi J, Varaud E, Leroux J, et al. 2009. Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. The Plant Journal 60:1070−80 doi: 10.1111/j.1365-313X.2009.04023.x
[47] Varaud E, Brioudes F, Szécsi J, Leroux J, Brown S, et al. 2011. AUXIN RESPONSE FACTOR 8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. The Plant Cell 23:973−83 doi: 10.1105/tpc.110.081653
[48] Goossens J, Mertens J, Goossens A. 2016. Role and functioning of bHLH transcription factors in jasmonate signalling. Journal of Experimental Botany 68:erw440 doi: 10.1093/jxb/erw440
[49] Díaz-Sala C. 2019. Molecular dissection of the regenerative capacity of forest tree species: Special focus on conifers. Frontiers in Plant Science 9:1943 doi: 10.3389/fpls.2018.01943
[50] Niu S, Liu S, Ma J, Han F, Li Y, et al. 2019. The transcriptional activity of a temperature-sensitive transcription factor module is associated with pollen shedding time in pine. Tree Physiology 39:1173−86 doi: 10.1093/treephys/tpz023
[51] Niu S, Yuan H, Sun X, Porth I, Li Y, et al. 2016. A transcriptomics investigation into pine reproductive organ development. New Phytologist 209:1278−89 doi: 10.1111/nph.13680
[52] Ma J, Liu S, Han F, Li W, Li Y, et al. 2020. Comparative transcriptome analyses reveal two distinct transcriptional modules associated with pollen shedding time in pine. BMC Genomics 21:504 doi: 10.1186/s12864-020-06880-9
[53] Zhang M, Li W, Feng J, Gong Z, Yao Y, et al. 2020. Integrative transcriptomics and proteomics analysis constructs a new molecular model for ovule abortion in the female-sterile line of Pinus tabuliformis Carr. Plant Science 294:110462 doi: 10.1016/j.plantsci.2020.110462
[54] Chen C, Chen, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009