[1] Viana AP, Riaz S, Walker MA. 2013. Genetic dissection of agronomic traits within a segregating population of breeding table grapes. Genetics and Molecular Research 12:951−64 doi: 10.4238/2013.april.2.11
[2] Sapkota S, Chen L, Yang S, Hyma KE, Cadle-Davidson L, et al. 2019. Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived 'Norton'. Theoretical and Applied Genetics 132:137−47 doi: 10.1007/s00122-018-3203-6
[3] Vizetelly H. 1876. Reports of the Commissioners of the United States to the International Exhibition held at Vienna, 1873, ed. RH Thurston. Government Printing Office, Washington. pp. 284−89
[4] Mouer D. Norton Grapes: An American Original WineMaker. https://winemakermag.com/article/534-norton-grapes-an-american-original
[5] Ambers RKR, Ambers CP. 2004. Dr. Daniel Norborne Norton and the Origin of the Norton Grape. American Wine Society 36:77−87
[6] Stover E, Aradhya M, Yang J, Bautista J, Dangl GS. 2009. Investigations into the origin of 'Norton' grape using SSR markers. Proceedings of Florida State Horticultural Society 122:14−24
[7] Main GL, Morris JR. 2004. Leaf-removal effects on Cynthiana yield, juice composition, and wine composition. American Journal of Enology and Viticulture 55:147−52
[8] Liu H, Wu B, Fan P, Li S, Li L. 2006. Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. Journal of the Science of Food and Agriculture 86:1526−36 doi: 10.1002/jsfa.2541
[9] Jogaiah S, Striegler KR, Bergmeier E, Harris J. 2013. Influence of canopy management practices on canopy characteristics, yield, and fruit composition of "norton" grapes (Vitis aestivalis Michx). International Journal of Fruit Science 13:441−58 doi: 10.1080/15538362.2013.789267
[10] Doerr NE. 2014. Development of flavonoid compounds in Norton and Cabernet Sauvignon grape skins during maturation. M.S. Thesis, University of Missouri, U.S. pp 84−91 https://doi.org/10.32469/10355/44262
[11] Kliewer WM. 1966. Sugars and organic acids of Vitis vinifera. Plant Physiology 41:923−31 doi: 10.1104/pp.41.6.923
[12] Rice AC. 1974. Chemistry of Winemaking from Native American Grape Varieties. In Chemistry of Winemaking, ed. Webb A. Washington DC: American Chemical Society. pp. 88–115 https://doi.org/10.1021/ba-1974-0137.ch004
[13] Volschenk H, van Vuuren HJJ, Viljoen-Bloom M. 2006. Malic Acid in Wine: Origin, Function and Metabolism during Vinification. South African Journal of Enology & Viticulture 27:123−36 doi: 10.21548/27-2-1613
[14] Kliewer WM. 1965. Changes in the concentration of malates, tartrates, and total free acids in flowers and berries of Vitis vinifera. American Journal of Enology and Viticulture 16:92−100
[15] Ruffner HP. 1982. Metabolism of tartaric and malic acids in Vitis: a review - part B. Vitis 21:346−58
[16] Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329−44 doi: 10.1016/j.phytochem.2009.08.006
[17] Iland PG, Coombe BG. 1988. Malate, Tartrate, Potassium, and Sodium in Flesh and Skin of Shiraz Grapes During Ripening: Concentration and Compartmentation. American Journal of Enology and Viticulture 39(1):71−76
[18] Kliewer WM, Howarth L, Omori M. 1967. Concentrations of tartaric acid and malic acids and their salts in Vitis vinifera grapes. American Journal of Enology and Viticulture 18(1):42−54
[19] Liu H, Wu B, Fan P, Xu H, Li S. 2007. Inheritance of sugars and acids in berries of grape (Vitis vinifera L.). Euphytica 153:99−107 doi: 10.1007/s10681-006-9246-9
[20] Haggerty LL. 2013. Ripening Profile of Grape Berry Acids and Sugars in University of Minnesota Wine Grape Cultivars, Select Vitis vinifera, and Other Hybrid Cultivars, Thesis. University of Minnesota, U.S. pp. 25−47
[21] Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, et al. 2007. Biochemical changes throughout grape berry development and fruit and wine quality. Food 1(1):1−22
[22] Hale CR. 1977. Relation between potassium and the malate and tartrate contents of grape berries. Vitis 16:9−19 doi: 10.5073/vitis.1977.16.9-19
[23] Boulton R. 1980. The relationships between total acidity, titratable acidity and pH in grape tissue. Vitis 19:113−20 doi: 10.5073/vitis.1980.19.113-120
[24] Duchêne E, Dumas V, Jaegli N, Merdinoglu D. 2014. Genetic variability of descriptors for grapevine berry acidity in Riesling, Gewürztraminer and their progeny. Australian Journal of Grape and Wine Research 20:91−99 doi: 10.1111/ajgw.12051
[25] Smith PA, Mercurio MD, Dambergs RG, Francis IL, Herderich MJ. 2007. Grape and wine tannin - are there relationships between tannin concentration and variety, quality, and consumer preference. Conference Proceedings 13th Australian Wine Industry Technical Conference, Adelaide, Ausrtalia, 2007. 28:189–92. Ausrtalia: Australian Wine Industry Technical Conference Inc.
[26] Kennedy JA, Troup GJ, Pilbrow JR, Hutton DR, Hewitt D, et al. 2000. Development of seed polyphenols in berries from Vitis vinifera L. cv. Shiraz. Australian Journal of Grape and Wine Research 6:244−54 doi: 10.1111/j.1755-0238.2000.tb00185.x
[27] Kennedy JA, Hayasaka Y, Vidal S, Waters EJ, Jones GP. 2001. Composition of grape skin proanthocyanidins at different stages of berry development. Journal of Agricultural and Food Chemistry 49:5348−55 doi: 10.1021/jf010758h
[28] Jogaiah S, Striegler KR, Bergmeier E, Harris J. 2012. Influence of cluster exposure to sun on fruit composition of 'Norton' grapes (Vitis estivalis Michx) in Missouri. International Journal of Fruit Science 12:410−26 doi: 10.1080/15538362.2012.679180
[29] Sarneckis CJ, Dambergs RG, Jones P, Mercurio M, Herderich MJ, et al. 2006. Quantification of condensed tannins by precipitation with methyl cellulose: development and validation of an optimised tool for grape and wine analysis. Australian Journal of Grape and Wine Research 12:39−49 doi: 10.1111/j.1755-0238.2006.tb00042.x
[30] Bobeica N, Poni S, Hilbert G, Renaud C, Gomès E, et al. 2015. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. Frontiers in Plant Science 6:382 doi: 10.3389/fpls.2015.00382
[31] Mirás-Avalos JM, Buesa I, Yeves A, Pérez D, Risco D, et al. 2019. Unravelling the effects of berry size on 'Tempranillo' grapes under different field practices. Ciência e Técnica Vitivinícola 34:1−14 doi: 10.1051/ctv/20193401001
[32] Comuzzo P, Battistutta F. 2019. Acidification and pH control in red wines. In Red Wine Technology, ed. Morata A. UK: Academic Press, Elsevier. pp. 17–34.
[33] Chen J, Wang N, Fang L, Liang Z, Li S, et al. 2015. Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biology 15:28 doi: 10.1186/s12870-015-0428-2
[34] Houel C, Chatbanyong R, Doligez A, Rienth M, Foria S, et al. 2015. Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC Plant Biology 15:205 doi: 10.1186/s12870-015-0588-0
[35] Yang S, Fresnedo-Ramírez J, Wang M, Cote L, Schweitzer P, et al. 2016. A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: A case study for marker-assisted selection in grapevine. Horticulture Research 3:160002 doi: 10.1038/hortres.2016.2
[36] Yang S, Fresnedo-Ramírez J, Sun Q, Manns DC, Sacks GL, et al. 2016. Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PLoS ONE 11:e0149560 doi: 10.1371/journal.pone.0149560
[37] Bayo-Canha A, Costantini L, Fernández-Fernández JI, Martínez-Cutillas A, Ruiz-García L. 2019. QTLs related to berry acidity identified in a wine grapevine population grown in warm weather. Plant Molecular Biology Reporter 37:157−69 doi: 10.1007/s11105-019-01145-6
[38] Duchêne É, Dumas V, Butterlin G, Jaegli N, Rustenholz C, et al. 2020. Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium. Theoretical and Applied Genetics 133:993−1008 doi: 10.1007/s00122-019-03524-9
[39] Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, et al. 2011. Genetic structure and domestication history of the grape. PNAS 108:3530−35 doi: 10.1073/pnas.1009363108
[40] Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S, et al. 2014. Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theoretical and Applied Genetics 127:73−84 doi: 10.1007/s00122-013-2202-x
[41] Laucou V, Launay A, Bacilieri R, Lacombe T, Adam-Blondon AF, et al. 2018. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLOS ONE 13:e0192540 doi: 10.1371/journal.pone.0192540
[42] Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, et al. 2011. A Robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379 doi: 10.1371/journal.pone.0019379
[43] Swarts K, Li H, Romero Navarro JA, An D, Romay MC, et al. 2014. Novel Methods to Optimize Genotypic Imputation for Low-Coverage, Next-Generation Sequence Data in Crop Plants. The Plant Genome 7:plantgenome2014.05.0023 doi: 10.3835/plantgenome2014.05.0023
[44] Vezzulli S, Micheletti D, Riaz S, Pindo M, Viola R, et al. 2008. A SNP transferability survey within the genus Vitis. BMC Plant Biology 10:128 doi: 10.1186/1471-2229-8-128
[45] Hammers M, Sapkota S, Chen LL, Hwang CF. 2017. Constructing a genetic linkage map of Vitis aestivalis-derived "Norton" and its use in comparing Norton and Cynthiana. Molecular Breeding 37:64 doi: 10.1007/s11032-017-0644-6
[46] Adhikari P, Chen LL, Chen X, Sapkota SD, Hwang CF. 2014. Interspecific hybrid identification of Vitis aestivalis-derived 'Norton'-based populations using microsatellite markers. Scientia Horticulturae 179:363−66 doi: 10.1016/j.scienta.2014.09.048
[47] Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169−96 doi: 10.1007/s10681-005-1681-5
[48] Cartwright DA, Troggio M, Velasco R, Gutin A. 2007. Genetic mapping in the presence of genotyping errors. Genetics 176:2521−27 doi: 10.1534/genetics.106.063982
[49] Ball AD, Stapley J, Dawson DA, Birkhead TR, Burke T, et al. 2010. A comparison of SNPs and microsatellites as linkage mapping markers: Lessons from the zebra finch (Taeniopygia guttata). BMC Genomics 11:218 doi: 10.1186/1471-2164-11-218
[50] Rastas P. 2017. Lep-MAP3: Robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics 33:3726−32 doi: 10.1093/bioinformatics/btx494
[51] Teh SL, Fresnedo-Ramírez J, Clark MD, Gadoury DM, Sun Q, et al. 2017. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. Molecular Breeding 37:1 doi: 10.1007/s11032-016-0586-4
[52] Su K, Xing H, Guo Y, Zhao F, Liu Z, et al. 2020. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. BMC genomics 21:419 doi: 10.1186/s12864-020-06836-z
[53] Zou C, Karn A, Reisch B, Nguyen A, Sun Y, et al. 2020. Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus. Nature Communications 11:413 doi: 10.1038/s41467-019-14280-1
[54] Pavlquš ek P, Kumš ta M. 2011. Profiling of primary metabolites in grapes of interspecific grapevine varieties: sugars and organic acids. Czech Journal of Food Sciences 29:361−72 doi: 10.17221/257/2010-cjfs
[55] Bayo-Canha A, Fernández-Fernández JI, Martínez-Cutillas A, Ruiz-García L. 2012. Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny. Euphytica 186:393−407 doi: 10.1007/s10681-012-0622-3
[56] Duchêne E, Butterlin G, Dumas V, Merdinoglu D. 2012. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theoretical and Applied Genetics 124:623−35 doi: 10.1007/s00122-011-1734-1
[57] Huang YF, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y, et al. 2012. Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. BMC Plant Biology 12(1):30 doi: 10.1186/1471-2229-12-30
[58] Dixon RA, Xie DY, Sharma SB. 2005. Proanthocyanidins - A final frontier in flavonoid research? New Phytologist 165:9−28 doi: 10.1111/j.1469-8137.2004.01217.x
[59] Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754−60 doi: 10.1093/bioinformatics/btp324
[60] Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, et al. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633−35 doi: 10.1093/bioinformatics/btm308
[61] Van Ooijen JW. 2006. JoinMap 4.0: Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV.
[62] Perea C, De La Hoz JF, Cruz DF, Lobaton JD, Izquierdo P, et al. 2016. Bioinformatic analysis of genotype by sequencing (GBS) data with NGSEP. BMC Genomics 17:498 doi: 10.1186/s12864-016-2827-7
[63] Van Ooijen JW. 2009. MapQTL®6, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV.
[64] Coombe BG. 1995. Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research 1:104−10 doi: 10.1111/j.1755-0238.1995.tb00086.x
[65] Mercurio M, Smith PA. 2006. New formats for the methyl cellulose precipitable (MCP) tannin assay allow high throughput measurement of grape and wine tannin by industry. Technical Review 164:1−10
[66] R Core Team. 2020. R: A Language and Environment for Statistical Computing
[67] Venables WN, Ripley BD. 2002. Modern Applied Statistics with S. New York: Springer. Fourth edition. https://doi.org/10.1007/978-0-387-21706-2
[68] Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67:1−48 doi: 10.18637/jss.v067.i01
[69] Harrell Jr FE, Dupont C. 2020. Hmisc: Harrell Miscellaneous. R package version 4.4-0.
[70] Kim S. 2015. ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Communications for statistical applications and methods 22:665 doi: 10.5351/CSAM.2015.22.6.665
[71] Fox J, Weisberg S. An R Companion to Applied Regression. CA: Sage. Third edition.