[1] FAOSTAT. 2019. Production domain. In Crops. FAO, Rome https://www.fao.org/faostat/en/#data/QCL
[2] USDA-NASS. 2019. Vegetables 2018 summary. United States Department of Agriculture National Agricultural Statistics Service, Wahington, DC.
[3] Cao G, Sofic E, Prior RL. 1996. Antioxidant capacity of tea and common vegetables. Journal of Agricultural and Food Chemistry 44:3426−31 doi: 10.1021/jf9602535
[4] Howard LR, Pandjaitan N, Morelock T, Gil MI. 2002. Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. Journal of Agricultural and Food Chemistry 50:5891−96 doi: 10.1021/jf020507o
[5] USDA-ARS. 2020. FoodData Central, 2020.
[6] Bunea A, Andjelkovic M, Socaciu C, Bobis O, Neacsu M, et al. 2008. Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry 108:649−56 doi: 10.1016/j.foodchem.2007.11.056
[7] Yosefi Z, Tabaraki R, Gharneh HAA, Mehrabi AA. 2010. Variation in antioxidant activity, total phenolics, and nitrate in spinach. International Journal of Vegetable Science 16:233−42 doi: 10.1080/19315260903577278
[8] Ko SH, Park JH, Kim SY, Lee SW, Chun SS, et al. 2014. Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Preventive Nutrition and Food Science 19:19−26 doi: 10.3746/pnf.2014.19.1.019
[9] Correll JC, Bluhm BH, Feng C, Lamour K, Toit LJ, et al. 2011. Spinach: better management of downy mildew and white rust through genomics. European Journal of Plant Pathology 129:193−205 doi: 10.1007/s10658-010-9713-y
[10] Ribera A, Bai Y, Wolters AMA, Treuren R, Kik C. 2020. A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.). Euphytica 216:48 doi: 10.1007/s10681-020-02585-y
[11] Kadereit G, Mavrodiev EV, Zacharias EH, Sukhorukov AP. 2010. Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): Implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. American Journal of Botany 97:1664−87 doi: 10.3732/ajb.1000169
[12] Fuentes-Bazan S, Mansion G, Borsch T. 2012. Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Molecular Phylogenetics and Evolution 62:359−74 doi: 10.1016/j.ympev.2011.10.006
[13] Stevens P. 2020. Angiosperm Phylogeny Website. Version 14, July 2017. http://www.mobot.org/MOBOT/research/APweb/welcome.html
[14] Arumuganathan K, Earle ED. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9:208−18 doi: 10.1007/BF02672069
[15] Morelock TE, Correll JC. 2007. Spinach. In Vegetables I. Handbook of Plant Breeding, eds. Prohens J, Nuez F. New York: Springer. pp 189–218 https://doi.org/10.1007/978-0-387-30443-4_6
[16] Koike ST, Cahn M, Cantwell M, Fennimore S, Lestrange M, et al. 2011. Spinach Production in California. Publication Number: 7212. University of California, Agriculture and Natural Resources. https://doi.org/10.3733/ucanr.7212
[17] Khattak JZK, Torp AM, Andersen SB. 2006. A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica 148:311−18 doi: 10.1007/s10681-005-9031-1
[18] Janick J, Stevenson EC. 1955. Genetics of the monoecious character in spinach. Genetics 40:429−37 doi: 10.1093/genetics/40.4.429
[19] Iizuka M, Janick J. 1971. Sex chromosome variation in Spinacia oleracea L. Journal of Heredity 62:349−52 doi: 10.1093/oxfordjournals.jhered.a108192
[20] Yamamoto K, Oda Y, Haseda A, Fujito S, Mikami T. 2014. Molecular evidence that the genes for dioecism and monoecism in Spinacia oleracea L. are located at different loci in a chromosomal region. Heredity 112:317−24 doi: 10.1038/hdy.2013.112
[21] Okazaki Y, Takahata S, Hirakawa H, Suzuki Y, Onodera Y, et al. 2019. Molecular evidence for recent divergence of X- and Y-linked gene pairs in Spinacia oleracea L. PLoS One 14:e0214949 doi: 10.1371/journal.pone.0214949
[22] She H, Xu Z, Zhang H, Li G, Wu J, et al. 2021. Identification of a male-specific region (MSR) in Spinacia oleracea. Horticultural Plant Journal 7:341−46 doi: 10.1016/j.hpj.2021.01.003
[23] Komai F, Masuda K. 2004. Plasticity in sex expression of spinach (Spinacia oleracea) regenerated from root tissues. Plant Cell, Tissue and Organ Culture 78:285−87 doi: 10.1023/B:TICU.0000025665.74491.1e
[24] Janick J, Stevenson EC. 1955. Environmental influences on sex expression in monoecious lines of spinach. Proceeding Am. Soc. Hortic. Sci. 75:416−22
[25] Thompson AE. 1955. Methods of producing first-generation hybrid seed in spinach. Cornell Agric. Exp. Stn. Mem. 336:1−48
[26] Chailakhyan MK, Khrianin VN. 1987. Hormonal regulation of sex expression and age-related changes. In Sexuality in Plants and Its Hormonal Regulation, ed. Thimann KV. NY: Springer, New York. pp. 33–58 https://doi.org/10.1007/978-1-4612-4734-0_3
[27] Rubatzky VE, Yamaguchi M. 1997. Spinach, table beets, and other vegetable Chenopods. In World Vegetables. MA: Springer, Boston. pp. 457–73 https://doi.org/10.1007/978-1-4615-6015-9_21
[28] Andersen SB, Torp AM. 2011. Spinacia. In Wild Crop Relatives: Genomic and Breeding Resources, ed. Kole C. Heidelberg: Springer, Berlin. pp. 273–76 https://doi.org/10.1007/978-3-642-20450-0_13
[29] Sneep J. 1983. The domestication of spinach and the breeding history of its varieties. Euphytica Supplement 2:1−27
[30] Xu C, Jiao C, Sun H, Cai X, Wang X, et al. 2017. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications 8:15275 doi: 10.1038/ncomms15275
[31] Shi A, Qin J, Mou B, Correll J, Weng Y, et al. 2017. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing. PLoS One 12:e0188745 doi: 10.1371/JOURNAL.PONE.0188745
[32] Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, et al. 2015. Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinct Spinacia species. G3 Genes|Genomes|Genetics 5:1663−73 doi: 10.1534/g3.115.018671
[33] Gyawali S, Bhattarai G, Shi A, et al. 2021. Genetic diversity and population structure of Spinacia turkestanica, a wild progenitor of cultivated spinach, Spinacia oleracea. HortScience 56:S200. (Abstr. doi: 10.21273/HORTSCI.56.9S.S1
[34] Cai X, Sun X, Xu C, Sun H, Wang X, et al. 2021. Reference genome and resequencing of 305 accessions provide insights into spinach evolution, domestication and genetic basis of agronomic traits. bioRxiv In Press doi: 10.1101/2021.08.11.455939
[35] Bhattarai G, Shi A, Kandel DR, Solís-Gracia N, da Silva JA, et al. 2021. Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions. Scientific Reports 11:9999 doi: 10.1038/s41598-021-89473-0
[36] Ribera A, van Treuren R, Kik C, Bai Y, Wolters AMA, et al. 2021. On the origin and dispersal of cultivated spinach (Spinacia oleracea L.). Genetic Resources and Crop Evolution 68:1023−32 doi: 10.1007/s10722-020-01042-y
[37] Meyer RS, Purugganan MD. 2013. Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics 14:840−52 doi: 10.1038/nrg3605
[38] Yang Z, Li G, Tieman D, Zhu G. 2019. Genomics approaches to domestication studies of horticultural crops. Horticultural Plant Journal 5:240−46 doi: 10.1016/j.hpj.2019.11.001
[39] Matsumura H, Hsiao MC, Lin YP, Toyoda A, Taniai N, et al. 2020. Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication. Proceedings of the National Academy of Sciences of the United States of America 117:14543−51 doi: 10.1073/pnas.1921016117
[40] Wei T, van Treuren R, Liu X, Zhang Z, Chen J, et al. 2021. Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nature Genetics 53:752−60 doi: 10.1038/s41588-021-00831-0
[41] van Treuren R, de Groot L, Hisoriev H, Khassanov F, Farzaliyev V, et al. 2020. Acquisition and regeneration of Spinacia turkestanica Iljin and S. tetrandra Steven ex M. Bieb. to improve a spinach gene bank collection. Genetic Resources and Crop Evolution 67:549−59 doi: 10.1007/s10722-019-00792-8
[42] Bhattarai G, Shi A, Feng C, Dhillon B, Mou B, et al. 2020. Genome wide association studies in multiple spinach breeding populations refine downy mildew race 13 resistance genes. Frontiers in Plant Science 11:563187 doi: 10.3389/fpls.2020.563187
[43] Khattak JZK, Christiansen JL, Torp AM, Andersen SB. 2007. Genic microsatellite markers for discrimination of spinach cultivars. Plant Breeding 126:454−56 doi: 10.1111/j.1439-0523.2007.01392.x
[44] Hu J, Mou B, Vick BA. 2007. Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genetic Resources and Crop Evolution 54:1667−74 doi: 10.1007/s10722-006-9175-4
[45] Kuwahara K, Suzuki R, Ito Y, Mikami T, Onodera Y. 2014. An analysis of genetic differentiation and geographical variation of spinach germplasm using SSR markers. Plant Genetic Resources 12:185−90 doi: 10.1017/S1479262113000464
[46] Xu C, Jiao C, Zheng Y, Sun H, Liu W, et al. 2015. De novo and comparative transcriptome analysis of cultivated and wild spinach. Scientific Reports 5:17706 doi: 10.1038/srep17706
[47] Whisson DL, Steele Scott N. 1985. Nuclear and mitochondrial DNA have sequence homology with a chloroplast gene. Plant Molecular Biology 4:267−273 doi: 10.1007/BF02418245
[48] Timmis JN, Scott NS. 1983. Sequence homology between spinach nuclear and chloroplast genomes. Nature 305:65−67 doi: 10.1038/305065a0
[49] Scott NS, Timmis JN. 1984. Homologies between nuclear and plastid DNA in spinach. Theoretical and Applied Genetics 67:279−88 doi: 10.1007/BF00317055
[50] Stren DB, Palmer JD. 1986. Tripartite mitochondrial genome of spinach: Physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences. Nucleic Acids Research 14:5651−66 doi: 10.1093/nar/14.14.5651
[51] Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, et al. 2001. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Molecular Biology 45:307−15 doi: 10.1023/A:1006478403810
[52] Ito M, Ohmido N, Akiyama Y, Fukui K, Koba T. 2000. Characterization of spinach chromosomes by condensation patterns and physical mapping of 5S and 45S rDNAs by FISH. Journal of the American Society for Horticultural Science 125:59−62 doi: 10.21273/jashs.125.1.59
[53] Groben R, Wricke G. 1998. Occurrence of microsatellites in spinach sequences from computer databases and development of polymorphic SSR markers. Plant Breeding 117:271−274 doi: 10.1111/j.1439-0523.1998.tb01938.x
[54] Feng C, Bluhm BH, Correll JC. 2015. Construction of a spinach bacterial artificial chromosome (BAC) library as a resource for gene identification and marker development. Plant Molecular Biology Reporter 33:1996−2005 doi: 10.1007/s11105-015-0891-9
[55] Göl Ş, Göktay M, Allmer J, Doğanlar S, Frary A. 2017. Newly developed SSR markers reveal genetic diversity and geographical clustering in spinach (Spinacia oleracea). Molecular Genetics and Genomics 292:847−855 doi: 10.1007/s00438-017-1314-4
[56] Li S, Wang B, Guo Y, Deng C, Gao W. 2018. Genome-wide characterization of microsatellites and genetic diversity assessment of spinach in the chinese germplasm collection. Breeding Science 68:455−464 doi: 10.1270/jsbbs.18032
[57] Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, et al. 2014. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546−549 doi: 10.1038/nature12817
[58] Minoche AE, Dohm JC, Schneider J, Holtgräwe D, Viehöver P, et al. 2015. Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome Biology 16:184 doi: 10.1186/s13059-015-0729-7
[59] Irish BM, Correll JC, Feng C, Bentley T, de los Reyes BG. 2008. Characterization of a resistance locus (Pfs-1) to the spinach downy mildew pathogen (Peronospora farinosa f. sp. spinaciae) and development of a molecular marker linked to Pfs-1. Phytopathology 98:894−900 doi: 10.1094/PHYTO-98-8-0894
[60] Collins K, Zhao K, Jiao C, Xu C, Cai X, et al. 2019. SpinachBase: A central portal for spinach genomics. Database 2019:baz072 doi: 10.1093/database/baz072
[61] Hulse-Kemp AM, Bostan H, Chen S, Ashrafi H, Stoffel K, et al. 2021. An anchored chromosome-scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids. The Plant Genome 14:e20101 doi: 10.1002/tpg2.20101
[62] Hirakawa H, Toyoda A, Itoh T, Suzuki Y, Nagano AJ, et al. 2021. A spinach genome assembly with remarkable completeness, and its use for rapid identification of candidate genes for agronomic traits. DNA Research 28:dsab004 doi: 10.1093/dnares/dsab004
[63] Shi A, Correll J, Feng C, et al. 2019. Progress at developing genetic and molecular resources to improve spinach production and management. HortScience 54:S137. (Abstr. doi: 10.21273/HORTSCI.54.9S.S1
[64] Sneep J. 1958. The present position of spinach breeding. Euphytica 7:1−8 doi: 10.1007/BF00037858
[65] Janick J. 2015. Hybrids in Horticultural Crops. In Concepts and Breeding of Heterosis in Crop Plants, eds. Larnkey KR, Staub JE. Madison, Wisconsin: Crop Science Society of America, pp. 45–56 https://doi.org/10.2135/cssaspecpub25.c4
[66] Toit L. 2018. Spinach seed production in the Pacific Northwest. 2018 International Spinach Conference, Murcia, Spain https://spinach.uark.edu/spain-presentations/
[67] McLeod P, Morelock TE, Goode MJ. 1991. Preference, developmental time, adult longevity and fecundity of green peach aphid (Homoptera: Aphididae) on spinach. Journal of Entomological Science 26:95−98 doi: 10.18474/0749-8004-26.1.95
[68] Mou B. 2008. Leafminer resistance in spinach. HortScience 43:1716−19 doi: 10.21273/hortsci.43.6.1716
[69] Greenhut RF. 2018. Developing baby leaf spinach with reduced cadmium accumulation. MS Thesis. University of California, Davis.
[70] Knepper C, Mou B. 2014. Initial Evaluation of Spinach Collections for Drought Tolerance. HortScience 49:S295. (Abstr. doi: 10.21273/HORTSCI.49.9S.S1
[71] Liu Z, Lu T, Feng C, Zhang H, Xu Z, et al. 2021. Fine mapping and molecular marker development of the Fs gene controlling fruit spines in spinach (Spinacia oleracea L.). Theoretical and Applied Genetics 134:1319−28 doi: 10.1007/s00122-021-03772-8
[72] Mou B. 2019. 'USDA Red' spinach. HortScience 54:2070−72 doi: 10.21273/HORTSCI14308-19
[73] Correll JC, Morelock TE, Black MC, Brandenberger LP, Dainello FJ. 1994. Economically important diseases of spinach. Plant Disease 78:653−60 doi: 10.1094/PD-78-0653
[74] Smith PG, Webb RE, Luhn CH. 1962. Immunity to race 2 of Spinach downy mildew. Phytopathology 52:597−99
[75] Zink FW, Smith PG. 1958. A second physiologic race of spinach downy mildew. Plant Disease Report 42
[76] Smith PG, Webb RE, Millett AM, Luhn CH. 1961. Downy mildew on spinach: A second race of fungus has been found on Califlay variety in the coastal valley area of California. California Agriculture 15:5
[77] Eenink AE. 1976. Resistance in spinach to downy mildew. In Proceedings of Eucarpia Meeting. Leafy Vegetables. Wageningen, Holland. pp. 53–54
[78] Jones RK. 1982. Occurrence of race 3 of Peronospora effusa on spinach in Texas and identification of sources of resistance. Plant Disease 66:1078−79 doi: 10.1094/pd-66-1078
[79] Brandenberger LP, Correll JC, Morelock TE . 1991. Identification of and cultivar reactions to a new race (race 4) of Peronospora farinosa f. sp. spinaciae on spinach in the United States. Plant Disease 75:630−34 doi: 10.1094/pd-75-0630
[80] Irish BM, Correll JC, Koike ST, Schafer J, Morelock TE. 2003. Identification and cultivar reaction to three new races of the spinach downy mildew pathogen from the United States and Europe. Plant Disease 87:567−72 doi: 10.1094/PDIS.2003.87.5.567
[81] Irish BM, Correll JC, Koike ST, Morelock TE. 2007. Three new races of the spinach downy mildew pathogen identified by a modified set of spinach differentials. Plant Disease 91:1392−96 doi: 10.1094/PDIS-91-11-1392
[82] Plantum. 2018. Denomination of Pfs: 17, a new race of downy mildew in spinach. http://www.naktuinbouw.com/about-naktuinbouw/news/denomination-pfs-17-new-race-downy-mildew-spinach. Accessed 10 Feb 2021
[83] Feng C, Saito K, Liu B, Manley A, Kammeijer K, et al. 2018. New races and novel strains of the spinach downy mildew pathogen Peronospora effusa. Plant Disease 102:613−18 doi: 10.1094/PDIS-05-17-0781-RE
[84] Feng C, Correll JC, Kammeijer KE, Koike ST. 2014. Identification of new races and deviating strains of the spinach downy mildew pathogen Peronospora farinosa f. sp. spinaciae. Plant Disease 98:145−52 doi: 10.1094/PDIS-04-13-0435-RE
[85] Plantum. 2021. Denomination of Pe : 18 and 19, two new races of downy mildew in spinach. https://plantum.nl/denomination-of-pe-18-and-19-two-new-races-of-downy-mildew-in-spinach/. Accessed 25 May 2021
[86] Lyon R, Correll J, Feng C, Bluhm B, Shrestha S, et al. 2016. Population structure of Peronospora effusa in the southwestern United States. PLoS One 11:e0148385 doi: 10.1371/journal.pone.0148385
[87] Kandel SL, Mou B, Shishkoff N, Shi A, Subbarao KV, et al. 2019. Spinach downy mildew: Advances in our understanding of the disease cycle and prospects for disease management. Plant Disease 103:791−803 doi: 10.1094/PDIS-10-18-1720-FE
[88] Bhattarai G, Feng C, Dhillon B, Shi A, Villarroel-Zeballos M, et al. 2020. Detached leaf inoculation assay for evaluating resistance to the spinach downy mildew pathogen. European Journal of Plant Pathology 158:511−20 doi: 10.1007/s10658-020-02096-5
[89] Dhillon B, Feng C, Villarroel-Zeballos MI, et al. 2020. Sporangiospore viability and oospore production in the spinach downy mildew pathogen, Peronospora effusa. Plant Disease 104:2634−41 doi: 10.1094/PDIS-02-20-0334-RE
[90] Brandenberger LP, Correll JC, Morelock TE, McNew RW. 1994. Characterization of resistance of spinach to white rust (Albugo occidentalis) and downy mildew (Peronospora farinosa f. sp. spinaciae). Phytopathology 84:431−37 doi: 10.1094/Phyto-84-431
[91] Sullivan MJ, Damicone JP, Payton ME. 2002. The effects of temperature and wetness period on the development of spinach white rust. Plant Disease 86:753−58 doi: 10.1094/PDIS.2002.86.7.753
[92] Leskovar DI, Kolenda K. 2002. Strobilurin + acibenzolar-S-methyl controls white rust without inducing leaf chlorosis in spinach. Annals of Applied Biology 140:171−75 doi: 10.1111/j.1744-7348.2002.tb00170.x
[93] Vakalounakis DJ, Doulis AG. 2013. First record of white rust, caused by Albugo occidentalis, on spinach in Greece. Plant Disease 97:1253 doi: 10.1094/PDIS-02-13-0198-PDN
[94] Correll JC, Feng CD, Liu B. 2017. First report of white rust (Albugo occidentalis) of spinach in mexico. Plant Disease 101:511 doi: 10.1094/PDIS-06-16-0905-PDN
[95] Soylu S, Kara M, Ku rt, Uysal A, Shin HD, et al. 2018. First report of white blister rust disease caused by Albugo occidentalis on Spinach in Turkey. Plant Disease 102:826 doi: 10.1094/pdis-10-17-1561-pdn
[96] du Toit LJ. 2004. Management of diseases in seed crops. In Encyclopedia of Plant and Crop Science, ed. Goodman RM. New York: Routledge. pp. 675–77 http://doi.org/10.1081/E-EPCS120019947
[97] Gatch EW, du Toit LJ. 2017. Limestone-mediated suppression of Fusarium wilt in spinach seed crops. Plant Disease 101:81−94 doi: 10.1094/PDIS-04-16-0423-RE
[98] Gyawali S, du Toit LJ, Shi A, Correll JC. 2019. Genome wide association studies of Fusarium wilt resistance in spinach (Spinacia oleracea L.). Phytopathology 109:S2.83 (Abstr. doi: 10.1094/PHYTO-109-10-S2.1
[99] du Toit LJ, Derie ML, Hernandez-Perez P. 2005. Verticillium wilt in spinach seed production. Plant Disease 89:4−11 doi: 10.1094/PD-89-0004
[100] Liu B, Stein L, Cochran K, du Toit LJ, Feng C, et al. 2020. Characterization of leaf spot pathogens from several spinach production areas in the United States. Plant Disease 104:1994−2004 doi: 10.1094/PDIS-11-19-2450-RE
[101] du Toit LJ, Derie ML. 2001. 2001. Stemphylium botryosum pathogenic on spinach seed crops in Washington. Plant Disease 85:920 doi: 10.1094/pdis.2001.85.8.920b
[102] Hernandez-Perez P, Du Toit LJ. 2006. Seedborne Cladosporium variabile and Stemphylium botryosum in spinach. Plant Dis 90:137−45 doi: 10.1094/PD-90-0137
[103] Mou B, Koike ST, Du Toit LJ. 2008. Screening for resistance to leaf spot diseases of spinach. HortScience 43:1706−10 doi: 10.21273/hortsci.43.6.1706
[104] Shi A, Mou B, Correll J, Koike ST, Motes D, et al. 2016. Association analysis and identification of SNP markers for Stemphylium leaf spot (Stemphylium botryosum f. sp. spinacia) resistance in spinach (Spinacia oleracea). American Journal of Plant Sciences 07:1600−11 doi: 10.4236/ajps.2016.712151
[105] Liu B, Bhattarai G, Shi A, et al. 2020. Evaluation of resistance of USDA spinach germplasm to Stemphylium vesicarium. Phytopathology 110:S2.178 (Abstr. doi: 10.1094/PHYTO-110-12-S2.1
[106] Bhattarai G, Shi A, Avila CA, Stein LA. 2020. GWAS on USDA Spinach Germplasm Evaluated for Downy Mildew in the Texas' Wintergarden Production Area. 55:S227. (Abstr. doi: 10.21273/HORTSCI.55.9S.S1
[107] Bates ML. 1984. Root rot of hydroponically grown spinach caused by Pythium aphanidermatum and P. dissotocum. Plant Disease 68:989−91 doi: 10.1094/pd-68-989
[108] Gold SE, Stanghellini ME. 1985. Effects of temperature on Pythium root rot of spinach grown under hydroponic conditions. Phytopathology 75:333−37 doi: 10.1094/phyto-75-333
[109] Liu B, Feng C, Matheron ME, Correll JC. 2018. Characterization of foliar web blight of spinach, caused by Pythium aphanidermatum, in the desert southwest of the United States. Plant Disease 102:608−12 doi: 10.1094/PDIS-06-17-0859-RE
[110] Onodera Y, Yonaha I, Masumo H, Tanaka A, Niikura S, et al. 2011. Mapping of the genes for dioecism and monoecism in Spinacia oleracea L.: Evidence that both genes are closely linked. Plant Cell Reports 30:965−71 doi: 10.1007/s00299-010-0998-2
[111] Chan-Navarrete R, Dolstra O, van Kaauwen M, Lammerts van Bueren ET, Linden CG, et al. 2016. Genetic map construction and QTL analysis of nitrogen use efficiency in spinach (Spinacia oleracea L.). Euphytica 208:621−36 doi: 10.1007/s10681-015-1618-6
[112] Fujita N, Ayukawa Y, Fuke M, eraoka T, Watanabe K, et al. 2017. Rapid sex identification method of spinach (Spinacia oleracea L.) in the vegetative stage using loop-mediated isothermal amplification. Planta 245:221−26 doi: 10.1007/s00425-016-2618-z
[113] Qian W, Fan G, Liu D, Zhang H, Wang X, et al. 2017. Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq). BMC Genomics 18:1 doi: 10.1186/s12864-017-3659-9
[114] Feng C, Bluhm B, Shi A, Correll JC. 2018. Development of molecular markers linked to three spinach downy mildew resistance loci. Euphytica 214:174 doi: 10.1007/s10681-018-2258-4
[115] She H, Qian W, Zhang H, Liu Z, Wang X, et al. 2018. Fine mapping and candidate gene screening of the downy mildew resistance gene RPF1 in Spinach. Theoretical and Applied Genetics 131:2529−2541 doi: 10.1007/s00122-018-3169-4
[116] Bhattarai G, Yang W, Shi A, Feng C, Dhillon B, et al. 2021. High resolution mapping and candidate gene identification of downy mildew race 16 resistance in spinach. BMC Genomics 22:478 doi: 10.1186/s12864-021-07788-8
[117] Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. 2003. Genome-wide analysis of NBS-LRR-encoding genes in arabidopsis. The Plant Cell 15:809−34 doi: 10.1105/tpc.009308
[118] Michelmore RW, Meyers BC. 1998. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Research 8:1113−30 doi: 10.1101/gr.8.11.1113
[119] Hulbert SH, Webb CA, Smith SM, Sun Q. 2001. Resistance gene complexes: evolution and utilization. Annual Review of Phytopathology 39:285−312 doi: 10.1146/annurev.phyto.39.1.285
[120] Bhattarai G. 2019. Genetic resistance to the downy mildew pathogen and mapping the RPF resistance loci in spinach. Doctoral Dissertation. University of Arkansas, Fayetteville, USA. https://scholarworks.uark.edu/etd/3442
[121] Bhattarai G, Shi A, Correll JC, Feng C. 2020. Field evaluation and genome-wide association analysis of downy mildew resistance in spinach. HortScience 55:S227. (Abstr. doi: 10.21273/HORTSCI.55.9S.S1
[122] Olaoye D. 2021. Resistance Screening and Association Mapping for Resistance to the Downy Mildew Pathogen of Spinach. Graduate Theses and Dissertations. University of Arkansas, Fayetteville, USA. https://scholarworks.uark.edu/etd/4107
[123] Ma J, Shi A, Mou B, Evans M, Clark J, et al. 2016. Association mapping of leaf traits in spinach (Spinacia oleracea L.). Plant Breeding 135:399−404 doi: 10.1111/pbr.12369
[124] Chitwood J, Shi A, Mou B, Evans M, Clark J, et al. 2016. Population structure and association analysis of bolting, plant height, and leaf erectness in spinach. HortScience 51:481−86 doi: 10.21273/hortsci.51.5.481
[125] Shi A, Mou B. 2016. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea). Genome 59:581−88 doi: 10.1139/gen-2016-0075
[126] Shi A, Mou B, Correll JC. 2016. Association analysis for oxalate concentration in spinach. Euphytica 212:17−28 doi: 10.1007/s10681-016-1740-0
[127] Shi A, Mou B, Correll J, Motes D, Weng Y, et al. 2016. SNP association analysis of resistance to Verticillium wilt (Verticillium dahliae Kleb.) in spinach. Australian Journal of Crop Science 10:1188−96 doi: 10.21475/ajcs.2016.10.08.p7893
[128] Qin J, Shi A, Mou B, Grusak MA, Weng Y, et al. 2017. Genetic diversity and association mapping of mineral element concentrations in spinach leaves. BMC Genomics 18:941 doi: 10.1186/s12864-017-4297-y
[129] Awika HO, Cochran K, Joshi V, Bedre R, Mandadi KK, et al. 2020. Single-marker and haplotype-based association analysis of anthracnose (Colletotrichum dematium) resistance in spinach (Spinacia oleracea). Plant Breeding 139:402−18 doi: 10.1111/pbr.12773
[130] Awika HO, Marconi TG, Bedre R, Mandadi KK, Avila CA. 2019. Minor alleles are associated with white rust (Albugo occidentalis) susceptibility in spinach (Spinacia oleracea). Horticulture Research 6:129 doi: 10.1038/s41438-019-0214-7
[131] Awika HO, Bedre R, Yeom J, Marconi TG, Enciso J, et al. 2019. Developing growth-associated molecular markers via high-throughput phenotyping in spinach. Plant Genome 12:190027 doi: 10.3835/plantgenome2019.03.0027
[132] Kunz DDR, Awika HO, Avila CA. 2020. Vitamin C content in spinach germplasm: phenotypic diversity and genome-wide association mapping. HortScience 55:S351. (Abstr. doi: 10.21273/HORTSCI.55.9S.S1
[133] Gyawali S, Bhattarai G, du Toit LJ, et al. 2021. Genome wide association studies of Fusarium wilt resistance in wild spinach, Spinacia turkestanica. In American Phytopathological Society Annual Meeting 2021 https://www.apsnet.org/meetings/annual/PlantHealth2021/Pages/default.aspx
[134] Kandel SL, Hulse-Kemp AM, Stoffel K, Koike ST, Shi A, et al. 2020. Transcriptional analyses of differential cultivars during resistant and susceptible interactions with Peronospora effusa, the causal agent of spinach downy mildew. Scientific Reports 10:6719 doi: 10.1038/s41598-020-63668-3
[135] Zia B. 2021. Genetic Resistance to the Downy Mildew Pathogen and Breeding towards Durable Disease Management in Spinach. Doctoral Dissertation. University of Arkansas, Fayetteville, USA.
[136] Bhattarai G, Shi A. 2021. Comparative transcriptome and proteome analysis of resistant and susceptible spinach in response to downy mildew pathogen. HortScience 56:S103. (Abstr. doi: 10.21273/HORTSCI.56.9S.S1
[137] Mou B. 2008. Evaluation of oxalate concentration in the U.S. spinach germplasm collection. HortScience 43:1690−93 doi: 10.21273/hortsci.43.6.1690
[138] Bsc SN. 1999. Oxalate content of foods and its effect on humans. Asia Pacific Journal of Clinical Nutrition 8:64−74 doi: 10.1046/j.1440-6047.1999.00038.x
[139] Jonvik KL, Nyakayiru J, Pinckaers PJ, Senden JMG, van Loon LJC, et al. 2016. Nitrate-rich vegetables increase plasma nitrate and nitrite concentrations and lower blood pressure in healthy adults. The Journal of Nutrition 146:986−93 doi: 10.3945/jn.116.229807
[140] Murphy KM, Campbell KG, Lyon SR, Jones SS. 2007. Evidence of varietal adaptation to organic farming systems. Field Crops Research 102:172−77 doi: 10.1016/j.fcr.2007.03.011
[141] Kaminishi A, Kita N. 2006. Seasonal change of nitrate and oxalate concentration in relation to the growth rate of spinach cultivars. HortScience 41:1589−95 doi: 10.21273/HORTSCI.41.7.1589
[142] Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, et al. 2008. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Molecular Plant-Microbe Interactions 21:30−39 doi: 10.1094/MPMI-21-1-0030
[143] Pessina S, Lenzi L, Perazzolli M, Campa M, Dalla Costa L, et al. 2016. Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Horticulture Research 3:16016 doi: 10.1038/hortres.2016.16
[144] Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, et al. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34 doi: 10.3390/plants8020034
[145] Gornall J, Betts R, Burke E, Clark R, Camp J, et al. 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 365:2973−89 doi: 10.1098/rstb.2010.0158
[146] Battisti DS, Naylor RL. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240−44 doi: 10.1126/science.1164363
[147] Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. 2017. Metabolomics for plant improvement: Status and prospects. Frontiers in Plant Science 8:1302 doi: 10.3389/fpls.2017.01302
[148] Fernie AR, Schauer N. 2009. Metabolomics-assisted breeding: a viable option for crop improvement? Trends in Genetics 25:39−48 doi: 10.1016/j.tig.2008.10.010
[149] Zhao J, Bayer PE, Ruperao P, Saxena RK, Khan AW, et al. 2020. Trait associations in the pangenome of pigeon pea (Cajanus cajan). Plant Biotechnology Journal 18:1946−54 doi: 10.1111/pbi.13354
[150] Gao L, Gonda I, Sun H, Ma Q, Bao K, et al. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics 51:1044−51 doi: 10.1038/s41588-019-0410-2
[151] Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. 2020. Plant pan-genomes are the new reference. Nature Plants 6:914−20 doi: 10.1038/s41477-020-0733-0
[152] Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, et al. 2021. Designing future crops: genomics-assisted breeding comes of age. Trends in Plant Science 26:631−49 doi: 10.1016/j.tplants.2021.03.010
[153] Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE. 2018. Translating high-throughput phenotyping into genetic gain. Trends in Plant Science 23:451−66 doi: 10.1016/j.tplants.2018.02.001
[154] Yang W, Feng H, Zhang X, Zhang J, Doonan JH, et al. 2020. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol Plant 13:187−214 doi: 10.1016/j.molp.2020.01.008