[1] Zhao J, Sauvage C, Zhao J, Bitton F, Bauchet G, et al. 2019. Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nature Communications 10:1534 doi: 10.1038/s41467-019-09462-w
[2] Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, et al. 2019. Tomato fruit development and metabolism. Frontiers in Plant Science 10:1554 doi: 10.3389/fpls.2019.01554
[3] Gerszberg A, Hnatuszko-Konka K, Kowalczyk T, Kononowicz AK. 2015. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC) 120:881−902 doi: 10.1007/s11240-014-0664-4
[4] Zhu G, Wang S, Huang Z, Zhang S, Liao Q, et al. 2018. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell 172:249−261.e12 doi: 10.1016/j.cell.2017.12.019
[5] The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635−41 doi: 10.1038/nature11119
[6] Sun S, Wang X, Wang K, Cui X. 2020. Dissection of complex traits of tomato in the post-genome era.pdf. Theoretical and Applied Genetics 133:1763−76 doi: 10.1007/s00122-019-03478-y
[7] Zsögön A, Cermak T, Voytas D, Peres LEP. 2017. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Science 256:120−130 doi: 10.1016/j.plantsci.2016.12.012
[8] Kazachkova Y, Zemach I, Panda S, Bocobza S, Vainer A, et al. 2021. The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness. Nature Plants 7:468−80 doi: 10.1038/s41477-021-00865-6
[9] Husain SE, James C, Shields R, Foyer CH. 2001. Manipulation of fruit sugar composition but not content in Lycopersicon esculentum fruit by introgression of an acid invertase gene from Lycopersicon pimpinellifolium. New Phytologist 150:65−72 doi: 10.1046/j.1469-8137.2001.00070.x
[10] Huang LF, Bocock PN, Davis JM, Koch KE. 2007. Regulation of invertase: A 'suite' of transcriptional and post-transcriptional mechanisms. Functional Plant Biology 34:499−507 doi: 10.1071/FP06227
[11] Wang R, Tavano ECdR, Lammers M, Martinelli AP, Angenent GC, et al. 2019. Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Scientific Reports 9:1696 doi: 10.1038/s41598-018-38170-6
[12] Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, et al. 2019. Modern trends in plant genome editing: An inclusive review of the CRISPR/Cas9 Toolbox. International Journal of Molecular Sciences 20:4045 doi: 10.3390/ijms20164045
[13] Wang T, Zhang H, Zhu H. 2019. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticulture Research 6:77 doi: 10.1038/s41438-019-0159-x
[14] Meyer RS, Purugganan MD. 2013. Evolution of crop species: Genetics of domestication and diversification. Nature Reviews Genetics 14:840−52 doi: 10.1038/nrg3605
[15] Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, et al. 2008. Mode of inheritance of primary metabolic traits in tomato. The Plant Cell 20:509−23 doi: 10.1105/tpc.107.056523
[16] Tieman D, Zhu G, Resende MFR, Lin T, Nguyen C, et al. 2017. A chemical genetic roadmap to improved tomato flavor. Science 355:391−394 doi: 10.1126/science.aal1556
[17] Geng R, Ke X, Wang C, He Y, Wang H, Zhu Z. 2017. Genome-wide identification and expression analysis of transcription factors in Solanum lycopersicum. Agri Gene 6:14−23 doi: 10.1016/j.aggene.2017.08.002
[18] Razifard H, Ramos A, della Valle AL, Bodary C, Goetz E, et al. 2020. Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Molecular Biology and Evolution 37:1118−32 doi: 10.1093/molbev/msz297
[19] Beckles DM, Hong N, Stamova L, Luengwilai K. 2012. Biochemical factors contributing to tomato fruit sugar content: a review. Fruits 67:49−64 doi: 10.1051/fruits/2011066
[20] Xia X, Cheng X, Li R, Yao J, Li Z, Cheng Y. 2021. Advances in application of genome editing in tomato and recent development of genome editing technology. Theoretical and Applied Genetics 134:2727−47 doi: 10.1007/s00122-021-03874-3
[21] Liu L, Shao Z, Zhang M, Wang Q. 2015. Regulation of carotenoid metabolism in tomato. Molecular Plant 8:28−39 doi: 10.1016/j.molp.2014.11.006
[22] Carrari F, Fernie AR. 2006. Metabolic regulation underlying tomato fruit development. Journal of Experimental Botany 57:1883−97 doi: 10.1093/jxb/erj020
[23] Shinozaki Y, Nicolas P, Fernandez-Pozo N, Ma Q, Evanich DJ, et al. 2018. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nature Communications 9:364 doi: 10.1038/s41467-017-02782-9
[24] Tohge T, Fernie AR. 2014. Metabolomics-inspired insight into developmental, environmental and genetic aspects of tomato fruit chemical composition and quality. Plant and Cell Physiology 56:1681−96 doi: 10.1093/pcp/pcv093
[25] Bauchet G, Grenier S, Samson N, Segura V, Kende A, et al. 2017. Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. New Phytologist 215:624−41 doi: 10.1111/nph.14615
[26] Guo A, Zhang D, Huang R, Zhang S, Li W, et al. 2020. Genome-wide identification and molecular characterization of the growth-regulating factors-interacting factor gene family in tomato. Genes 11:1435 doi: 10.3390/genes11121435
[27] Alseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N, et al. 2015. Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. The Plant Cell 27:485−512 doi: 10.1105/tpc.114.132266
[28] Tao J, Wu H, Li Z, Huang C, Xu X. 2018. Molecular evolution of GDP-D-Mannose Epimerase (GME), a key gene in plant ascorbic acid biosynthesis. Frontiers in Plant Science 9:1293 doi: 10.3389/fpls.2018.01293
[29] Kanayama Y. 2009. Sugar metabolism and fruit development in the tomato. The Horticulture Journal 86:417−25 doi: 10.2503/hortj.okd-ir01
[30] Yelle S, Chetelat RT, Dorais M, DeVerna JW, Bennett AB. 1991. Sink metabolism in tomato fruit: Genetic and biochemical analysis of sucrose accumulation. Plant Physiology 95:1026−1035 doi: 10.1104/pp.95.4.1026
[31] Klann EM, Hall B, Bennett AB. 1996. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiology 112:1321−30 doi: 10.1104/pp.112.3.1321
[32] Sato K, Goda Y, Yoshihira K NH. 1991. Structure and contents of main coloring constituents in the calyces of Hibiscus sabdariffa and commercial Roselle color. Food Hygiene and Safety Science 32:301−7 doi: 10.3358/shokueishi.32.301
[33] Hirakawa H, Shirasawa K, Ohyama A, Fukuoka H, Aoki K, et al. 2013. Genome-wide SNP genotyping to infer the effects on gene functions in tomato. DNA Research 20:221−33 doi: 10.1093/dnares/dst005
[34] Godt DE, Roitsch T. 1997. Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiology 115:273−82 doi: 10.1104/pp.115.1.273
[35] Sander A, Krausgrill S, Greiner S, Weil M, Rausch T. 1996. Sucrose protects cell wall invertase but not vacuolar invertase against proteinaceous inhibitors. FEBS Letters 385:171−75 doi: 10.1016/0014-5793(96)00378-X
[36] Rausch T, Greiner S. 2004. Plant protein inhibitors of invertases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1696:253−61 doi: 10.1016/j.bbapap.2003.09.017
[37] Bastías A, López-Climent M, Valcárcel M, Rosello S, Gómez-Cadenas A, et al. 2011. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor. Physiologia Plantarum 141:215−26 doi: 10.1111/j.1399-3054.2010.01435.x
[38] Oms-Oliu G, Rojas-Graü MA, González LA, Varela P, Soliva-Fortuny R, et al. 2010. Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: a review. Postharvest Biology and Technology 57:139−48 doi: 10.1016/j.postharvbio.2010.04.001
[39] Paolo D, Bianchi G, Scalzo RL, Morelli CF, Rabuffetti M, et al. 2018. The chemistry behind tomato quality. Natural Product Communications 13:1225−32 doi: 10.1177/1934578x1801300927
[40] Zhao J, Xu Y, Ding Q, Huang X, Zhang Y, et al. 2016. Association mapping of main tomato fruit sugars and organic acids. Frontiers in Plant Science 7:1286 doi: 10.3389/fpls.2016.01286
[41] Stommel JR. 1992. Enzymic components of sucrose accumulation in the wild tomato species Lycopersicon peruvianum. Plant Physiology 99:324−28 doi: 10.1104/pp.99.1.324
[42] Blanca J, Montero-Pau J, Sauvage C, Bauchet G, Illa E, et al. 2015. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics 16:257 doi: 10.1186/s12864-015-1444-1
[43] Li Z, Palmer WM, Martin AP, Wang R, Rainsford F, et al. 2012. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of young fruit. Journal of Experimental Botany 63:1155−66 doi: 10.1093/jxb/err329
[44] Clepet C, Devani RS, Boumlik R, Hao Y, Morin H, et al. 2021. The miR166-SlHB15A regulatory module controls ovule development and parthenocarpic fruit set under adverse temperatures in tomato. Molecular Plant 14:1185−98 doi: 10.1016/j.molp.2021.05.005
[45] Leong BJ, Lybrand DB, Lou YR, Fan P, Schilmiller AL, Last RL. 2019. Evolution of metabolic novelty: A trichome-expressed invertase creates specialized metabolic diversity in wild tomato. Science Advances 5:eaaw3754 doi: 10.1126/sciadv.aaw3754
[46] Geiger DR, Koch KE, Shieh WJ. 1996. Effect of environmental factors on whole plant assimilate partitioning and associated gene expression. Journal of Experimental Botany 47:1229−38 doi: 10.1093/jxb/47.Special_Issue.1229
[47] Ehneß R, Roitsch T. 1997. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. The Plant Journal 11:539−48 doi: 10.1046/j.1365-313X.1997.11030539.x
[48] Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, et al. 2003. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. The Plant Journal 33:395−411 doi: 10.1046/j.1365-313X.2003.01633.x
[49] von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L. 1990. Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. The EMBO Journal 9:3033−44 doi: 10.1002/j.1460-2075.1990.tb07499.x
[50] Cheng WH, Taliercio EW, Chourey PS. 1999. Sugars modulate an unusual mode of control of the cell-wall invertase gene (Incw1) through its 3' untranslated region in a cell suspension culture of maize. PNAS 96:10512−17 doi: 10.1073/pnas.96.18.10512
[51] Weber H, Borisjuk L, Heim U, Buchner P, Wobus U. 1995. Seed coat-associated invertases of faba bean control both unloading and storage functions. Cloning of cDNAs and cell type-specific expression. The Plant Cell 7:1835−64 doi: 10.1105/tpc.7.11.1835
[52] Tang G, Lüscher M, Sturm A. 1999. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. The Plant Cell 11:177−89 doi: 10.1105/tpc.11.2.177
[53] Goetz M, Godt DE, Guivarc'h A, Kahmann U, Chriqui D, et al. 2001. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. PNAS 98:6522−27 doi: 10.1073/pnas.091097998
[54] Klee HJ. 2010. Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytologist 187:44−56 doi: 10.1111/j.1469-8137.2010.03281.x
[55] Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, et al. 2020. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences 21:2590 doi: 10.3390/ijms21072590
[56] Desnoues E, Gibon Y, Baldazzi V, Signoret V, Génard M, et al. 2014. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biology 14:336 doi: 10.1186/s12870-014-0336-x
[57] Fotopoulos V. 2005. Plant invertases: structure, function and regulation of a diverse enzyme family. Journal of Biological Research 4:127−37
[58] Xiao W, Sheen J, Jang JC. 2000. The role of hexokinase in plant sugar signal transduction and growth and development. Plant Molecular Biology 44:451−61 doi: 10.1023/A:1026501430422
[59] Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, et al. 2019. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants 8:38 doi: 10.3390/plants8020038
[60] Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, et al. 2009. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology 150:1204−1218 doi: 10.1104/pp.109.136598
[61] Lim CJ, Lee HY, Kim WB, Lee BS, Kim J, et al. 2012. Screening of tissue-specific genes and promoters in tomato by comparing genome wide expression profiles of Arabidopsis orthologues. Molecules and Cells 34:53−59 doi: 10.1007/s10059-012-0068-4
[62] Martina M, Tikunov Y, Portis E, Bovy AG. 2021. The Genetic Basis of Tomato Aroma. Genes 12:226 doi: 10.3390/genes12020226
[63] Tadmor Y, Fridman E, Gur A, Larkov O, Lastochkin E, et al. 2002. Identification of malodorous, a Wild Species Allele Affecting Tomato Aroma That Was Selected against during Domestication. Journal of Agricultural and Food Chemistry 50:2005−9 doi: 10.1021/jf011237x
[64] Bermúdez L, de Godoy F, Baldet P, Demarco D, Osorio S, et al. 2014. Silencing of the tomato Sugar Partitioning Affecting protein (SPA) modifies sink strength through a shift in leaf sugar metabolism. The Plant Journal 77:676−87 doi: 10.1111/tpj.12418
[65] Munir S, Mumtaz MA, Ahiakpa JK, Liu G, Chen W, et al. 2020. Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics 21:284 doi: 10.1186/s12864-020-6708-8
[66] Tauzin AS, Giardina T. 2014. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Frontiers in Plant Science 5:293 doi: 10.3389/fpls.2014.00293
[67] Hons BA. 2003. Regulation and Function of extracellular Invertases of tomato. PhD Thesis. Julius-Maximilians-University, Würzburg, Germany. pp. 54-87
[68] Xiang L, Li Y, Rolland F, van den Ende W. 2011. Neutral invertase, hexokinase and mitochondrial ROS homeostasis: emerging links between sugar metabolism, sugar signaling and ascorbate synthesis. Plant Signaling & Behavior 6:1567−73 doi: 10.4161/psb.6.10.17036
[69] Ye J, Wang X, Hu T, Zhang F, Wang B, Li C, Yang T, Li H, Lu Y, Giovannoni JJ, Zhang Y YZ. 2017. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell 29:2249−68 doi: 10.1105/tpc.17.00211
[70] Yao Y, Geng M, Wu X, Liu J, Li R, et al. 2014. Genome-wide identification, 3D modeling, expression and enzymatic activity analysis of cell wall invertase gene family from cassava (Manihot esculenta Crantz). International Journal of Molecular Sciences 15:7313−31 doi: 10.3390/ijms15057313
[71] Roitsch T, González MC. 2004. Function and regulation of plant invertases: sweet sensations. Trends in Plant Science 9:606−13 doi: 10.1016/j.tplants.2004.10.009
[72] Datir S, Ghosh P. 2020. In silico analysis of the structural diversity and interactions between invertases and invertase inhibitors from potato (Solanum tuberosum L.). 3 Biotech 10:178 doi: 10.1007/s13205-020-02171-y
[73] Qi X, Wu Z, Li J, Mo X, Wu S, et al. 2007. AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Molecular Biology 64:575−87 doi: 10.1007/s11103-007-9177-4
[74] Durán-Soria S, Pott DM, Osorio S, Vallarino JG. 2020. Sugar signaling during fruit ripening. Frontiers in Plant Science 11:564917 doi: 10.3389/fpls.2020.564917
[75] Chibbar RN, Jaiswal S, Gangola M, Båga M. 2016. Carbohydrate Metabolism. In Reference Module in Food Science. Amsterdam: Elsevier. pp. 37−45 https://doi.org/10.1016/B978-0-08-100596-5.00089-5
[76] Aluri S, Büttner M. 2007. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. PNAS 104:2537−2542 doi: 10.1073/pnas.0610278104
[77] Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, et al. 2011. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. The Plant Cell 23:923−41 doi: 10.1105/tpc.110.081273
[78] Uluisik S, Chapman NH, Smith R, Poole M, Adams G, et al. 2016. Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology 34:950−52 doi: 10.1038/nbt.3602
[79] Sung M, Van K, Lee S, Nelson R, LaMantia J, et al. 2021. Identification of SNP markers associated with soybean fatty acids contents by genome-wide association analyses. Molecular Breeding 41:27 doi: 10.1007/s11032-021-01216-1
[80] Nguyen-Quoc B, Foyer CH. 2001. A role for 'futile cycles' involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. Journal of Experimental Botany 52:881−89 doi: 10.1093/jexbot/52.358.881
[81] Sun J, Loboda T, Sung SJS, Black CC. 1992. Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiology 98:1163−69 doi: 10.1104/pp.98.3.1163
[82] Stein O, Granot D. 2019. An overview of sucrose synthases in plants. Frontiers in Plant Science 10:95 doi: 10.3389/fpls.2019.00095
[83] Balibrea ME, Martínez-Andújar C, Cuartero J, Bolarín MC, Pérez-Alfocea F. 2006. The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism. Functional Plant Biology 33:279−88 doi: 10.1071/FP05134
[84] Yamaki S. 2010. Metabolism and accumulation of sugars translocated to fruit and their regulation. Journal of the Japanese Society for Horticultural Science 79:1−15 doi: 10.2503/jjshs1.79.1
[85] Beauvoit BP, Colombié S, Monier A, Andrieu MH, Biais B, et al. 2014. Model-assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion. The Plant Cell 26:3224−42 doi: 10.1105/tpc.114.127761
[86] Joubès J, Phan TH, Just D, Rothan C, Bergounioux C, et al. 1999. Molecular and biochemical characterization of the involvement of cyclin-dependent kinase a during the early development of tomato fruit. Plant Physiology 121:857−69 doi: 10.1104/pp.121.3.857
[87] Colombié S, Beauvoit B, Nazaret C, Bénard C, Vercambre G, et al. 2017. Respiration climacteric in tomato fruits elucidated by constraint-based modelling. New Phytologist 213:1726−39 doi: 10.1111/nph.14301
[88] Luengwilai K, Beckles DM. 2009. Starch granules in tomato fruit show a complex pattern of degradation. Journal of Agricultural and Food Chemistry 57:8480−87 doi: 10.1021/jf901593m
[89] Zhang X, Liu S, Du L, Yao Y, Wu J. 2019. Activities, transcript levels, and subcellular localizations of sucrose phosphate synthase, sucrose synthase, and neutral invertase and change in sucrose content during fruit development in pineapple (Ananas comosus). The Journal of Horticultural Science and Biotechnology 94:573−79 doi: 10.1080/14620316.2019.1604169
[90] Zhang X, Wang W, Du L, Xie J, Yao Y, et al. 2012. Expression patterns, activities and carbohydrate-metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening. International Journal of Molecular Sciences 13:9460−77 doi: 10.3390/ijms13089460
[91] Tetlow IJ, Morell MK, Emes MJ. 2004. Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of Experimental Botany 55:2131−45 doi: 10.1093/jxb/erh248
[92] Pfister B, Zeeman SC. 2016. Formation of starch in plant cells. Cellular and Molecular Life Sciences 73:2781−807 doi: 10.1007/s00018-016-2250-x
[93] Qu J, Xu S, Zhang Z, Chen G, Zhong Y, et al. 2018. Evolutionary, structural and expression analysis of core genes involved in starch synthesis. Scientific Reports 8:1−16 doi: 10.1038/s41598-018-30411-y
[94] Thomas R, Rainer E, Marc G, Bettina H, Sinha HM, et al. 2000. Regulation and function of extracellular invertase from higher plants in relation to assimilate partitioning, stress responses and sugar signalling. Functional Plant Biology 27:815−25 doi: 10.1071/PP00001
[95] Fan P, Miller AM, Schilmiller AL, Liu X, Ofner I, et al. 2016. In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. PNAS 12:E239−E248 doi: 10.1073/pnas.1517930113
[96] Ho LC. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Annual Review of Plant Physiology and Plant Molecular Biology 39:355−78 doi: 10.1146/annurev.pp.39.060188.002035
[97] Dinar MSM. 1981. The relationship between starch accumulation and soluble solids content of tomato fruits. Journal of the American Society for Horticultural Science 106:415−18
[98] Koch K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7:235−46 doi: 10.1016/j.pbi.2004.03.014
[99] Rojo E, Zouhar J, Carter C, Kovaleva V, Raikhel NV. 2003. A unique mechanism for protein processing and degradation in Arabidopsis thaliana. PNAS 100:7389−94 doi: 10.1073/pnas.1230987100
[100] Chrispeels MJ, Herman EM. 2000. Endoplasmicreticulum-derived compartments function in storage and as mediators of vacuolar remodeling via a new type of organelle, precursor protease vesicles. Plant Physiology 123:1227−33 doi: 10.1104/pp.123.4.1227
[101] Hayashi Y, Yamada K, Shimada T, Matsushima R, Nishizawa N, et al. 2001. A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant and Cell Physiology 42:894−99 doi: 10.1093/pcp/pce144
[102] Kohorn BD, Kobayashi M, Johansen S, Riese J, Huang L, et al. 2006. An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. The Plant Journal 46:307−16 doi: 10.1111/j.1365-313X.2006.02695.x
[103] Bianchetti RE, Cruz AB, Oliveira BS, Demarco D, Purgatto E, et al. 2017. Phytochromobilin deficiency impairs sugar metabolism through the regulation of cytokinin and auxin signaling in tomato fruits. Scientific Reports 7:7822 doi: 10.1038/s41598-017-08448-2
[104] Iqbal S, Ni X, Bilal MS, Shi T, Khalil-Ur-rehman M, et al. 2020. Identification and expression profiling of sugar transporter genes during sugar accumulation at different stages of fruit development in apricot. Gene 742:144584 doi: 10.1016/j.gene.2020.144584
[105] Jiang S, Chi Y, Wang J, Zhou J, Cheng Y, et al. 2015. Sucrose metabolism gene families and their biological functions. Scientific Reports 5:17583 doi: 10.1038/srep17583
[106] Fridman E, Zamir D. 2003. Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiology 131:603−9 doi: 10.1104/pp.014431
[107] Zhang N, Jiang J, Yang Y li, Wang Z he. 2015. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit. Journal of Zhejiang University-SCIENCE B 16:845−56 doi: 10.1631/jzus.B1400319
[108] Ahiakpa JK, Magdy M, Karikari B, Munir S, Mumtaz MA, et al. 2021. Genome-wide identification and expression profiling of tomato invertase genes indicate their response to stress and phytohormones. Journal of Plant Growth Regulation In Press doi: 10.1007/s00344-021-10384-5
[109] Slugina MA, Shchennikova AV, Kochieva EZ. 2018. LIN7 Cell-Wall Invertase Orthologs in Cultivated and Wild Tomatoes (Solanum Section Lycopersicon). Plant Molecular Biology Reporter 36:195−209 doi: 10.1007/s11105-018-1071-5
[110] Huang Z, Van Houten J, Gonzalez G, Xiao H, Van Der Knaap E. 2013. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Molecular Genetics and Genomics 288:111−29 doi: 10.1007/s00438-013-0733-0
[111] Wang Y, Jiang Z, Li Z, Zhao Y, Tan W, et al. 2019. Genome-wide identification and expression analysis of the VQ gene family in soybean (Glycine max). PeerJ 7:e7509 doi: 10.7717/peerj.7509
[112] Zhang R. 2019. Genetic analysis of fruit flavor and aroma volatile compounds in wild strawberry. PhD Thesis. Centre for Research in Agricultural in Genomics, University of Autonoma Barcelona, Brazil. pp. 15−89
[113] Zhou C, Zhu C, Xie S, Weng J, Lin Y, et al. 2021. Genome-wide analysis of zinc finger motif-associated homeodomain (ZF-HD) family genes and their expression profiles under abiotic stresses and phytohormones stimuli in tea plants (Camellia sinensis). Scientia Horticulturae 281:109976 doi: 10.1016/j.scienta.2021.109976
[114] Goff SA, Ricke D, Lan TH, Presting G, Wang R, et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92−100 doi: 10.1126/science.1068275
[115] Tymowska-Lalanne Z, Kreis M. 1998. Expression of the Arabidopsis thaliana invertase gene family. Planta 207:259−65 doi: 10.1007/s004250050481
[116] Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J. 2005. Structure, evolution, and expression of the two invertase gene families of rice. Journal of Molecular Evolution 60:615−34 doi: 10.1007/s00239-004-0242-1
[117] Chen Z, Gao K, Su X, Rao P, An X. 2015. Genome-wide identification of the invertase gene family in Populus. PLoS One 10:e0138540 doi: 10.1371/journal.pone.0138540
[118] Wang L, Zheng Y, Ding S, Zhang Q, Chen Y, et al. 2017. Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane. BMC Plant Biology 17:109 doi: 10.1186/s12870-017-1052-0
[119] Juárez-Colunga S, López-González C, Morales-Elías NC, Massange-Sánchez JA, Trachsel S, et al. 2018. Genome-wide analysis of the invertase gene family from maize. Plant Molecular Biology 97:385−406 doi: 10.1007/s11103-018-0746-5
[120] Shen L, Qin Y, Qi Z, Niu Y, Liu Z, et al. 2019. Genome-wide analysis, expression profile, and characterization of the acid invertase gene family in pepper. International Journal of Molecular Sciences 20:15 doi: 10.3390/ijms20010015
[121] Ranjan A, Ichihashi Y, Sinha NR. 2012. The tomato genome: Implications for plant breeding, genomics and evolution. Genome Biology 13:167 doi: 10.1186/gb-2012-13-8-167
[122] Salgotra RK, Stewart CN. 2020. Functional markers for precision plant breeding. International Journal of Molecular Sciences 21:4792 doi: 10.3390/ijms21134792
[123] Ruan YL, Patrick JW. 1995. The cellular pathway of postphloem sugar transport in developing tomato fruit. Planta 196:434−44 doi: 10.1007/BF00203641
[124] Fridman E, Carrari F, Liu Y, Fernie AR, Zamir D. 2004. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786−89 doi: 10.1126/science.1101666
[125] Nguyen CV, Vrebalov JT, Gapper NE, Zheng Y, Zhong S, et al. 2014. Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening. The Plant Cell 26:585−601 doi: 10.1105/tpc.113.118794
[126] Kataoka K, Yashiro Y, Habu T, Sunamoto K, Kitajima A. 2009. The addition ofgibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits. Scientia Horticulturae 123:228−33 doi: 10.1016/j.scienta.2009.09.001
[127] Odanaka S, Bennett AB, Kanayama Y. 2002. Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in Tomato. Plant Physiology 129:1119−26 doi: 10.1104/pp.000703
[128] Schaffer AA, Miron D, Petreikov M, Fogelman M, Spiegelman M, et al. 1998. Modification of carbohydrate content in developing tomato fruit. HortScience 34:1024−27 doi: 10.21273/hortsci.34.6.1024
[129] Chetelat RT, DeVerna JW, Bennett AB. 1995. Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato. Theoretical and Applied Genetics 91:334−39 doi: 10.1007/BF00220896
[130] Fridman E, Pleban T, Zamir D. 2000. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. PNAS 97:4718−23 doi: 10.1073/pnas.97.9.4718
[131] Ito Y, Sekiyama Y, Nakayama H, Nishizawa-Yokoi A, Endo M, et al. 2020. Allelic mutations in the r ipening - inhibitor locus generate extensive variation in tomato ripening. Plant Physiology 183:80−95 doi: 10.1104/pp.20.00020
[132] Draffehn AM, Meller S, Li L, Gebhardt C. 2010. Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biology 10:271 doi: 10.1186/1471-2229-10-271
[133] Baxter CJ, Sabar M, Quick PW, Sweetlove LJ. 2005. Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. Journal of Experimental Botany 56:1591−604 doi: 10.1093/jxb/eri154
[134] Winter H, Huber SC. 2000. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Critical Reviews in Biochemistry and Molecular Biology 35:253−89 doi: 10.1080/10409230008984165
[135] Long JC, Zhao W, Rashotte AM, Muday GK, Huber SC. 2002. Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells. Plant Physiology 128:591−602 doi: 10.1104/pp.010579
[136] Zeng Y, Wu Y, Avigne WT, Koch KE. 1999. Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. Plant Physiology 121:599−608 doi: 10.1104/pp.121.2.599
[137] Link M, Rausch T, Greiner S. 2004. In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles. FEBS Letters 573:105−9 doi: 10.1016/j.febslet.2004.07.062
[138] Trouverie J, Chateau-Joubert S, Thévenot C, Jacquemot MP, Prioul JL. 2004. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta 219:894−905 doi: 10.1007/s00425-004-1289-3
[139] Voegele RT, Wirsel S, Möll U, Lechner M, Mendgen K. 2006. Cloning and characterization of a novel invertase from the obligate biotroph Uromyces fabae and analysis of expression patterns of host and pathogen invertases in the course of infection. Molecular Plant-Microbe Interactions 19:625−34 doi: 10.1094/MPMI-19-0625
[140] Vu TV, Das S, Tran MT, Hong JC, Kim JY. 2020. Precision genome engineering for the breeding of tomatoes: recent progress and future perspectives. Frontiers in Genome Editing 2:25 doi: 10.3389/fgeed.2020.612137
[141] Balibrea Lara ME, Gonzalez Garcia MC, Fatima T, Ehneß R, Lee TK, et al. 2004. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. The Plant Cell 16:1276−87 doi: 10.1105/tpc.018929
[142] Xu X, Hu Q, Yang W, Jin Y. 2017. The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato. BMC Plant Biology 17:195 doi: 10.1186/s12870-017-1145-9
[143] Liu Y, Shi Y, Zhu N, Zhong S, Bouzayen M, et al. 2020. SlGRAS4 mediates a novel regulatory pathway promoting chilling tolerance in tomato. Plant Biotechnology Journal 18:1620−33 doi: 10.1111/pbi.13328
[144] Majda M, Robert S. 2018. The role of auxin in cell wall expansion. International Journal of Molecular Sciences 19:951 doi: 10.3390/ijms19040951
[145] Fu X, Shi Z, Jiang Y, Jiang L, Qi M, et al. 2019. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission. BMC Plant Biology 19:233 doi: 10.1186/s12870-019-1840-9
[146] Osorio S, Carneiro RT, Lytovchenko A, McQuinn R, Sorensen I, et al. 2020. Genetic and metabolic effects of ripening mutations and vine detachment on tomato fruit quality. Plant Biotechnology Journal 18:106−18 doi: 10.1111/pbi.13176
[147] Hu X, Zhu L, Zhang Y, Xu L, Li N, et al. 2019. Genome-wide identification of C2H2 zinc-finger genes and their expression patterns under heat stress in tomato (Solanum lycopersicum L.). PeerJ 7:e7929 doi: 10.7717/peerj.7929
[148] Arora L, Narula A. 2017. Gene editing and crop improvement using CRISPR-cas9 system. Frontiers in Plant Science 8:1932 doi: 10.3389/fpls.2017.01932
[149] Li R, Zhang L, Wang L, Chen L, Zhao R, et al. 2018. Reduction of tomato-plant chilling tolerance by CRISPR-Cas9-mediated SlCBF1 mutagenesis. Journal of Agricultural and Food Chemistry 66:9042−51 doi: 10.1021/acs.jafc.8b02177
[150] Feng Z, Mao Y, Xu N, Zhang B, Wei P, et al. 2014. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. PNAS 111:4632−37 doi: 10.1073/pnas.1400822111
[151] Li Q, Sapkota M, van der Knaap E. 2020. Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. Horticulture Research 7:36 doi: 10.1038/s41438-020-0258-8
[152] Santillán Martínez MI, Bracuto V, Koseoglou E, Appiano M, Jacobsen E, et al. 2020. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biology 20:284 doi: 10.1186/s12870-020-02497-y
[153] Mumtaz MA, Munir S, Liu G, Chen W, Wang Y, et al. 2020. Altered brassinolide sensitivity1 transcriptionally inhibits chlorophyll synthesis and photosynthesis capacity in tomato. Plant Growth Regulation 92:417−26 doi: 10.1007/s10725-020-00650-z
[154] Zhu L, Qian Q. 2020. Gain-of-function mutations: key tools for modifying or designing novel proteins in plant molecular engineering. Journal of Experimental Botany 71:1203−5 doi: 10.1093/jxb/erz519
[155] Li R, Li R, Li X, Fu D, Zhu B, et al. 2018. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnology Journal 16:415−27 doi: 10.1111/pbi.12781
[156] Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, et al. 2017. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics 49:162−68 doi: 10.1038/ng.3733
[157] Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, et al. 2017. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169:1142−1155.E12 doi: 10.1016/j.cell.2017.04.032
[158] Zhang Y, Massel K, Godwin ID, Gao C. 2028. Applications and potential of genome editing in crop improvement. Genome Biology 19:210 doi: 10.1186/s13059-018-1586-y
[159] Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, et al. 2017. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnology Journal 15:634−47 doi: 10.1111/pbi.12662
[160] Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Shima Y, et al. 2017. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nature Plants 3:866−74 doi: 10.1038/s41477-017-0041-5
[161] Yu Q, Wang B, Li N, Tang Y, Yang S, et al. 2017. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Scientific Reports 7:11874 doi: 10.1038/s41598-017-12262-1
[162] Li R, Fu D, Zhu B, Luo Y, Zhu H. 2018. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. The Plant Journal 94:513−24 doi: 10.1111/tpj.13872
[163] Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, et al. 2018. De novo domes- tication of wild tomato using genome editing. Nature Biotechnology 36:1211−16 doi: 10.1038/nbt.4272
[164] Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470−480.E8 doi: 10.1016/j.cell.2017.08.030
[165] Huang L. 2006. Molecular analysis of an acid invertase gene family in Arabidopsis. PhD thesis. Graduate School of University of Florida. USA. pp. 4−37
[166] Liu H, Ji Y, Liu Y, Tian S, Gao Q, et al. 2020. The sugar transporter system of strawberry: genome-wide identification and expression correlation with fruit soluble sugar-related traits in a Fragaria × ananassa germplasm collection. Horticulture Research 7:132 doi: 10.1038/s41438-020-00359-0