[1] Wei K, Wang L, Zhang Y, Ruan L, Li H, et al. 2019. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. The Plant Journal 97:825−40 doi: 10.1111/tpj.14161
[2] Chen X, Yu H, Zhu J, Chen Y, Fu Z, et al. 2021. Widely targeted metabolomic analyses of albino tea germplasm 'Huabai 1' and 'Baiye 1'. All Life 14:530−40 doi: 10.1080/26895293.2021.1933613
[3] Yu Y, Kou X, Gao R, Chen X, Zhao Z, et al. 2021. Glutamine synthetases play a vital role in high accumulation of theanine in tender shoots of albino tea germplasm "Huabai 1". Journal of agricultural and food chemistry 69:13904−15 doi: 10.1021/acs.jafc.1c04567
[4] Chen X, Li J, Yu Y, Kou X, Periakaruppan R, et al. 2022. STAY-GREEN and light-harvesting complex II chlorophyll a/b binding protein are involved in albinism of a novel albino tea germplasm 'Huabai 1'. Scientia Horticulturae 293:110653 doi: 10.1016/j.scienta.2021.110653
[5] Feng L, Gao M, Hou R, Hu X, Zhang L, et al. 2014. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chemistry 155:98−104 doi: 10.1016/j.foodchem.2014.01.044
[6] Wei K, Wang L, Zhang C, Wu L, Li H, et al. 2015. Transcriptome analysis reveals key flavonoid 3′-hydroxylase and flavonoid 3′, 5′-hydroxylase genes in affecting the ratio of dihydroxylated to trihydroxylated catechins in Camellia sinensis. PLoS One 10:e0137925 doi: 10.1371/journal.pone.0137925
[7] Lu M, Han J, Zhu B, Jia H, Yang T, et al. 2019. Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis). Planta 249:363−76 doi: 10.1007/s00425-018-3007-6
[8] Jia T, Ito H, Hu X, Tanaka A. 2015. Accumulation of the NON-YELLOW COLORING 1 protein of the chlorophyll cycle requires chlorophyll b in Arabidopsis thaliana. The Plant Journal 81:586−96 doi: 10.1111/tpj.12753
[9] Tanaka A, Tsuji H. 1985. Appearance of chlorophyll-protein complexes in greening barley seedlings. Plant and Cell Physiology 26:893−902 doi: 10.1093/oxfordjournals.pcp.a076984
[10] Tanaka R, Tanaka A. 2007. Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology 58:321−346 doi: 10.1146/annurev.arplant.57.032905.105448
[11] Yin X, Xie X, Xia X, Yu J, Ferguson IB, et al. 2016. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. The Plant Journal 86:403−12 doi: 10.1111/tpj.13178
[12] Zhang D, Li Y, Zhang X, Zha P, Lin R. 2017. The SWI2/SNF2 chromatin-remodeling ATPase BRAHMA regulates chlorophyll biosynthesis in Arabidopsis. Molecular Plant 10:155−67 doi: 10.1016/j.molp.2016.11.003
[13] Mao C, Lu S, Lv B, Zhang B, Shen J, et al. 2017. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiology 174:1747−63 doi: 10.1104/pp.17.00542
[14] Fang L, Ge H, Huang X, Liu Y, Lu M, et al. 2017. Trophic mode-dependent proteomic analysis reveals functional significance of light-independent chlorophyll synthesis in Synechocystis sp. PCC 6803. Molecular Plant 10:73−85 doi: 10.1016/j.molp.2016.08.006
[15] Stenbaek A, Jensen PE. 2010. Redox regulation of chlorophyll biosynthesis. Phytochemistry 71:853−59 doi: 10.1016/j.phytochem.2010.03.022
[16] Jumrani K, Bhatia VS, Pandey GP. 2017. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photosynthesis Research 131:333−50 doi: 10.1007/s11120-016-0326-y
[17] Zhang J, Wang S, Song S, Xu F, Pan Y, et al. 2019. Transcriptomic and proteomic analyses reveal new insight into chlorophyll synthesis and chloroplast structure of maize leaves under zinc deficiency stress. Journal of Proteomics 199:123−34 doi: 10.1016/j.jprot.2019.03.001
[18] Ma C, Chen L, Wang X, Jin J, Ma J, et al. 2012. Differential expression analysis of different albescent stages of 'Anji Baicha' (Camellia sinensis (L.) O. Kuntze) using cDNA microarray. Scientia Horticulturae 148:246−54 doi: 10.1016/j.scienta.2012.09.033
[19] Liu G, Han Z, Feng L, Gao L, Gao M, et al. 2016. De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan. Frontiers in Plant Science 7:322 doi: 10.3389/fpls.2016.00332
[20] Liu G, Han Z, Feng L, Gao L, Gao M, et al. 2017. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar 'Yu-Jin-Xiang' with an emphasis on catechin production. Scientific Reports 7:45062 doi: 10.1038/srep45062
[21] Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. PNAS 115:E4151−E4158 doi: 10.1073/pnas.1719622115
[22] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. 2010. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28:511−15 doi: 10.1038/nbt.1621
[23] Park Y, Wu H. 2016. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32:i1−10 doi: 10.1093/bioinformatics/btw326
[24] Zhang Y, Wei K, Li H, Wang L, Ruan L, et al. 2018. Identification of key genes involved in catechin metabolism in tea seedlings based on transcriptomic and HPLC analysis. Plant Physiology and Biochemistry 133:107−15 doi: 10.1016/j.plaphy.2018.10.029
[25] Wang L, Shi Y, Chang X, Jing S, Zhang Q, et al. 2019. DNA methylome analysis provides evidence that the expansion of the tea genome is linked to TE bursts. Plant Biotechnology Journal 17:826−35 doi: 10.1111/pbi.13018
[26] Duarte-Aké F, Castillo-Castro E, Pool FB, Espadas F, Santamaría JM, et al. 2016. Physiological differences and changes in global DNA methylation levels in Agave angustifolia Haw. albino variant somaclones during the micropropagation process. Plant Cell Reports 35:2489−502 doi: 10.1007/s00299-016-2049-0
[27] Us-Camas R, Castillo-Castro E, Aguilar-Espinosa M, Limones-Briones V, Rivera-Madrid R, et al. 2017. Assessment of molecular and epigenetic changes in the albinism of Agave angustifolia Haw. Plant Science 263:156−67 doi: 10.1016/j.plantsci.2017.07.010
[28] Guo Y, Gan S. 2006. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. The Plant Journal 46:601−12 doi: 10.1111/j.1365-313X.2006.02723.x
[29] Oda-Yamamizo C, Mitsuda N, Sakamoto S, Ogawa D, Ohme-Takagi M, et al. 2016. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Scientific Reports 6:23609 doi: 10.1038/srep23609
[30] Tak H, Negi S, Gupta A, Ganapathi TR. 2018. A stress associated NAC transcription factor MpSNAC67 from banana (Musa × paradisiaca) is involved in regulation of chlorophyll catabolic pathway. Plant Physiology and Biochemistry 132:61−71 doi: 10.1016/j.plaphy.2018.08.020
[31] Du YY, Shin S, Wang KR, Lu JL, Liang YR. 2009. Effect of temperature on the expression of genes related to the accumulation of chlorophylls and carotenoids in albino tea. Journal of Horticultural Science and Biotechnology 84:365−69 doi: 10.1080/14620316.2009.11512533
[32] Xia Y, Ning Z, Bai G, Li R, Yan G, et al. 2012. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1) associated with agronomic traits in barley. PLoS ONE 7:e37573 doi: 10.1371/journal.pone.0037573
[33] Mei J, Li F, Liu X, Hu G, Fu Y, et al. 2017. Newly identified CSP41b gene localized in chloroplasts affects leaf color in rice. Plant Science 256:39−45 doi: 10.1016/j.plantsci.2016.12.005
[34] Ma Q, Li H, Zou Z, Arkorful E, Lv Q, et al. 2018. Transcriptomic analyses identify albino-associated genes of a novel albino tea germplasm 'Huabai 1'. Horticulture Research 5:54 doi: 10.1038/s41438-018-0053-y
[35] Xu P, Su H, Jin R, Mao Y, Xu A, et al. 2020. Shading effects on leaf color conversion and biosynthesis of the major secondary metabolites in the albino tea cultivar "Yujinxiang". Journal of Agricultural and Food Chemistry 68:2528−38 doi: 10.1021/acs.jafc.9b08212
[36] Zhao J, Dixon RA. 2010. The 'ins' and 'outs' of flavonoid transport. Trends in Plant Science 15:72−80 doi: 10.1016/j.tplants.2009.11.006
[37] Brillouet JM, Romieu C, Schoefs B, Solymosi K, Cheynier V, et al. 2013. The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Annals of Botany 112:1003−1014 doi: 10.1093/aob/mct168
[38] Brillouet JM, Romieu C, Lartaud M, Jublanc E, Torregrosa L, et al. 2014. Formation of vacuolar tannin deposits in the chlorophyllous organs of Tracheophyta: from shuttles to accretions. Protoplasma 251:1387−1393 doi: 10.1007/s00709-014-0640-1
[39] Zheng G, Fan C, Di S, Wang X, Gao L, et al. 2019. Ectopic expression of tea MYB genes alter spatial flavonoid accumulation in alfalfa (Medicago sativa). PLoS One 14:e0218336 doi: 10.1371/journal.pone.0218336
[40] Vilperte V, Lucaciu CR, Halbwirth H, Boehm R, Rattei T, et al. 2019. Hybrid de novo transcriptome assembly of poinsettia (Euphorbia pulcherrima Willd. Ex Klotsch) bracts. BMC Genomics 20:900 doi: 10.1186/s12864-019-6247-3