[1]

Bartoli CG, Tambussi EA, Diego F, Foyer CH. 2009. Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Letters 583:118−22

doi: 10.1016/j.febslet.2008.11.034
[2]

Wang F, Wu N, Zhang L, Ahammed GJ, Chen X, et al. 2018. Light signaling-dependent regulation of photoinhibition and photoprotection in tomato. Plant Physiology 176:1311−26

doi: 10.1104/pp.17.01143
[3]

Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. 2012. Photosynthetic control of electron transport and the regulation of gene expression. Journal of Experimental Botany 63:1637−61

doi: 10.1093/jxb/ers013
[4]

Foyer CH, Ruban AV, Noctor G. 2017. Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochemical Journal 474:877−83

doi: 10.1042/BCJ20160814
[5]

Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, et al. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857−61

doi: 10.1126/science.aai8878
[6]

Thomas B. 2006. Light signals and flowering. Journal of Experimental Botany 57:3387−93

doi: 10.1093/jxb/erl071
[7]

Aphalo PJ. 2001. Light signals and the growth and development of plants-a gentle introduction. In The Plant Photobiology Notes. Joensuu, Finland: University of Joensuu. pp. 7–39

[8]

Buchanan BB, Balmer Y. 2005. Redox regulation: A broadening horizon. Annual Review of Plant Biology 56:187−220

doi: 10.1146/annurev.arplant.56.032604.144246
[9]

Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, et al. 2005. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630−33

doi: 10.1126/science.1115581
[10]

Wheeler GL, Jones MA, Smirnoff N. 1998. The biosynthetic pathway of vitamin C in higher plants. Nature 393:365−69

doi: 10.1038/30728
[11]

Hancock RD, McRae D, Haupt S, Viola R. 2003. Synthesis of L-ascorbic acid in the phloem. BMC Plant Biology 3:7

doi: 10.1186/1471-2229-3-7
[12]

Gautier H, Massot C, Stevens R, Sérino S, Génard M. 2009. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance. Annals of Botany 103:495−504

doi: 10.1093/aob/mcn233
[13]

Rizzolo A, Forni E, Polesello A. 1984. HPLC assay of ascorbic acid in fresh and processed fruit and vegetables. Food Chemistry 14:189−99

doi: 10.1016/0308-8146(84)90058-X
[14]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[15]

Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, et al. 1999. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. PNAS 96:4198−203

doi: 10.1073/pnas.96.7.4198
[16]

Tabata K, Takaoka T, Esaka M. 2002. Gene expression of ascorbic acid-related enzymes in tobacco. Phytochemistry 61:631−35

doi: 10.1016/S0031-9422(02)00367-9
[17]

Gatzek S, Wheeler GL, Smirnoff N. 2002. Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. The Plant Journal 30:541−53

doi: 10.1046/j.1365-313X.2002.01315.x
[18]

Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, et al. 2006. Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. Journal of Biological Chemistry 281:15662−70

doi: 10.1074/jbc.M601409200
[19]

Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, et al. 2007. Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the smirnoff-wheeler pathway to ascorbic acid in plants. Journal of Biological Chemistry 282:18879−85

doi: 10.1074/jbc.M702094200
[20]

Dumas Y, Dadomo M, Di Lucca G, Grolier P. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture 83:369−82

doi: 10.1002/jsfa.1370
[21]

Alves JD, Zanandrea I, Deuner S, Patrícia FPG, Souza KRD, et al. 2013. Antioxidative responses and morpho-anatomical adaptations to waterlogging in Sesbania virgata. Trees 27:717−28

doi: 10.1007/s00468-012-0827-z
[22]

Johkan M, Ishii M, Maruo T, Na L, Tsukagoshi S, et al. 2013. Improved light conditions at the fruit truss accelerate harvest time and enhance ascorbic acid concentration in a low-truss, high-density tomato production system. Journal of the Japanese Society for Horticultural Science 82:317−21

doi: 10.2503/jjshs1.82.317
[23]

Zhang Y, Han L, Ye Z, Li H. 2013. Ascorbic acid accumulation is transcriptionally modulated in High-Pigment-1 tomato fruit. Plant Molecular Biology Reporter 32:52−61

doi: 10.1007/s11105-013-0602-3
[24]

Li J, Liang D, Li M, Ma F. 2013. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters. Planta 238:535−47

doi: 10.1007/s00425-013-1915-z
[25]

Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, et al. 2007. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. Journal of Experimental Botany 58:2661−71

doi: 10.1093/jxb/erm124
[26]

Jimenez A, Creissen G, Kular B, Firmin J, Robinson S, et al. 2002. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214:751−58

doi: 10.1007/s004250100667
[27]

Yahia EM, Contreras-Padilla M, Gonzalez-Aguilar G. 2001. Ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell pepper fruits during development, maturation and senescence. LWT - Food Science and Technology 34:452−57

doi: 10.1006/fstl.2001.0790
[28]

Ahn T, Schofield A, Paliyath G. 2002. Changes in antioxidant enzyme activities during tomato fruit development. Physiology and Molecular Biology of Plants 8:241−49

[29]

Massot C, Stevens R, Génard M, Longuenesse JJ, Gautier H. 2012. Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits. Planta 235:153−63

doi: 10.1007/s00425-011-1493-x
[30]

Yabuta Y, Maruta T, Nakamura A, Mieda T, Yoshimura K, et al. 2008. Conversion of L-galactono-1, 4-lactone to L-ascorbate is regulated by the photosynthetic electron transport chain in Arabidopsis. Bioscience, Biotechnology and Biochemistry 72:2598−607

doi: 10.1271/bbb.80284
[31]

Jiang M, Liu Y, Ren L, She X, Chen H. 2018. Light regulates ascorbic acid accumulation and ascorbic acid-related genes expression in the peel of eggplant. South African Journal of Botany 114:20−28

doi: 10.1016/j.sajb.2017.10.012