[1]

Rand ES. 1866. Garden Flowers: How to Cultivate Them. A Treatise on the Culture of Hardy Ornamental Trees, Shrubs, Annuals, Herbaceous and Bedding Plants. Boston: J. E. Tilton and Company https://doi.org/10.5962/bhl.title.19601

[2]

Kapoor M. 2017. Managing ambient air quality using ornamental plants-an alternative approach. Universal Journal of Plant Science 5:1−9

doi: 10.13189/ujps.2017.050101
[3]

Oloyede F. 2012. Survey of ornamental ferns, their morphology and uses for environmental protection, improvement and management. Ife Journal of Science 14:245−52

[4]

Guimarães R, Barros L, Carvalho AM, Ferreira ICFR. 2010. Studies on chemical constituents and bioactivity of Rosa micrantha: An alternative antioxidants source for food, pharmaceutical, or cosmetic applications. Journal of Agricultural and Food Chemistry 58:6277−84

doi: 10.1021/jf101394w
[5]

Lubbe A, Verpoorte R. 2011. Cultivation of medicinal and aromatic plants for specialty industrial materials. Industrial Crops and Products 34:785−801

doi: 10.1016/j.indcrop.2011.01.019
[6]

Mlcek J, Rop O. 2011. Fresh edible flowers of ornamental plants – A new source of nutraceutical foods. Trends in Food Science & Technology 22:561−69

doi: 10.1016/j.jpgs.2011.04.006
[7]

Zhang Q, Chen W, Sun L, Zhao F, Huang B, et al. 2012. The genome of Prunus mume. Nature Communications 3:1318

doi: 10.1038/ncomms2290
[8]

Saint-Oyant LH, Ruttink T, Hamama L, Kirov I, Lakhwani D, et al. 2018. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nature Plants 4:473−84

doi: 10.1038/s41477-018-0166-1
[9]

Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, et al. 2018. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics 50:772−77

doi: 10.1038/s41588-018-0110-3
[10]

Song C, Liu Y, Song A, Dong G, Zhao H, et al. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Molecular Plant 11:1482−91

doi: 10.1016/j.molp.2018.10.003
[11]

Chao YT, Chen WC, Chen CY, Ho HY, Yeh CH, et al. 2018. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnology Journal 16:2027−41

doi: 10.1111/pbi.12936
[12]

Lv S, Cheng S, Wang Z, Li S, Jin X, et al. 2020. Draft genome of the famous ornamental plant Paeonia suffruticosa. Ecology and Evolution 10:4518−30

doi: 10.1002/ece3.5965
[13]

Maxam AM, Gilbert W. 1977. A new method for sequencing DNA. PNAS 74:560−64

doi: 10.1073/pnas.74.2.560
[14]

Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. PNAS 74:5463−67

doi: 10.1073/pnas.74.12.5463
[15]

The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796−815

doi: 10.1038/35048692
[16]

International Rice Genome Sequencing Project, Sasaki T . 2005. The map-based sequence of the rice genome. Nature 436:793−800

doi: 10.1038/nature03895
[17]

Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112−15

doi: 10.1126/science.1178534
[18]

The International Peach Genome Initiative, Verde I, Abbott AG, Scalabrin S, Jung S, et al. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics 45:487−94

doi: 10.1038/ng.2586
[19]

van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. 2018. The Third Revolution in Sequencing Technology. Trends in Genetics 34:666−81

doi: 10.1016/j.tig.2018.05.008
[20]

Li C, Lin F, An D, Wang W, Huang R. 2017. Genome sequencing and assembly by long reads in plants. Genes 9:6

doi: 10.3390/genes9010006
[21]

Schadt EE, Turner S, Kasarskis A. 2010. A window into third-generation sequencing. Human Molecular Genetics 19:R227−R240

doi: 10.1093/hmg/ddq416
[22]

Rang FJ, Kloosterman WP, de Ridder J. 2018. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biology 19:90

doi: 10.1186/s13059-018-1462-9
[23]

Lu H, Giordano F, Ning Z. 2016. a3 Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics & Bioinformatics 14:265−79

doi: 10.1016/j.gpb.2016.05.004
[24]

Schmidt MHW, Vogel A, Denton AK, Istace B, Wormit A, et al. 2017. De Novo assembly of a new Solanum pennellii accession using nanopore sequencing. The Plant Cell 29:2336−48

doi: 10.1105/tpc.17.00521
[25]

Kumar KR, Cowley MJ, Davis RL. 2019. Next-generation sequencing and emerging technologies. Seminars in Thrombosis and Hemostasis 45:661−73

doi: 10.1055/s-0039-1688446
[26]

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289−93

doi: 10.1126/science.1181369
[27]

Soza VL, Lindsley D, Waalkes A, Ramage E, Patwardhan RP, et al. 2019. The Rhododendron genome and chromosomal organization provide insight into shared whole-genome duplications across the heath family (Ericaceae). Genome Biology and Evolution 11:3353−71

doi: 10.1093/gbe/evz245
[28]

Yang F, Nie S, Liu H, Shi T, Tian X, et al. 2020. Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nature Communications 11:5269

doi: 10.1038/s41467-020-18771-4
[29]

Yang X, Tue Y, Li H, Ding W, Chen G, et al. 2018. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans. Horticulture Research 5:72

doi: 10.1038/s41438-018-0108-0
[30]

Shang J, Tian J, Cheng H, Yan Q, Li L, et al. 2020. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biology 21:200

doi: 10.1186/s13059-020-02088-y
[31]

Lv Q, Qiu J, Liu J, Li Z, Zhang W, et al. 2020. The Chimonanthus salicifolius genome provides insight into magnoliid evolution and flavonoid biosynthesis. Plant Journal 103:1910−23

doi: 10.1111/tpj.14874
[32]

Xu W, Zhang Q, Yuan W, Xu F, Muhammad Aslam M, et al. 2020. The genome evolution and low-phosphorus adaptation in white lupin. Nature Communications 11:1069

doi: 10.1038/s41467-020-14891-z
[33]

Hufnagel B, Marques A, Soriano A, Marquès L, Divol F, et al. 2020. High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nature Communications 11:492

doi: 10.1038/s41467-019-14197-9
[34]

Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, Reiser L, et al. 2001. The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Research 29:102−5

doi: 10.1093/nar/29.1.102
[35]

Zhang G, Xu Q, Bian C, Tsai WC, Yeh CM, et al. 2016. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports 6:19029

doi: 10.1038/srep19029
[36]

Silva-Junior OB, Grattapaglia D, Novaes E, Collevatti RG. 2018. Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree. GigaScience 7:gix125

doi: 10.1093/gigascience/gix125
[37]

Yuan ZH, Fang YM, Zhang TK, Fei ZJ, Han FM, et al. 2018. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. Plant Biotechnology Journal 16:1363−74

doi: 10.1111/pbi.12875
[38]

Li H, Yang X, Zhang Y, Gao Z, Liang Y, et al. 2021. Nelumbo genome database, an integrative resource for gene expression and variants of Nelumbo nucifera. Scientific Data 8:38

doi: 10.1038/s41597-021-00828-8
[39]

Hoshino A, Jayakumar V, Nitasaka E, Toyoda A, Noguchi H, et al. 2016. Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nature Communications 7:13295

doi: 10.1038/ncomms13295
[40]

Yagi M, Kosugi S, Hirakawa H, Ohmiya A, Tanase K, et al. 2014. Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.). DNA Research 21:231−41

doi: 10.1093/dnares/dst053
[41]

Jung S, Lee T, Cheng C, Buble K, Zheng P, et al. 2019. 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. Nucleic Acids Research 47:D1137−D1145

doi: 10.1093/nar/gky1000
[42]

Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40:D1178−D1186

doi: 10.1093/nar/gkr944
[43]

Lee TH, Tang H, Wang X, Paterson AH. 2013. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Research 41:D1152−D1158

doi: 10.1093/nar/gks1104
[44]

Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, et al. 2009. PLAZA: a comparative genomics resource to study gene and genome evolution in plants. The Plant Cell 21:3718−31

doi: 10.1105/tpc.109.071506
[45]

Kersey PJ, Allen JE, Christensen M, Davis P, Falin LJ, et al. 2014. Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Research 42:D546−D552

doi: 10.1093/nar/gkt979
[46]

Chen F, Dong W, Zhang J, Guo X, Chen J, et al. 2018. The sequenced angiosperm genomes and genome databases. Frontiers in Plant Science 9:418

doi: 10.3389/fpls.2018.00418
[47]

Li Y, Li L, Ding W, Li H, Shi T, et al. 2020. Genome-wide identification of Osmanthus fragrans bHLH transcription factors and their expression analysis in response to abiotic stress. Environmental and Experimental Botany 172:103990

doi: 10.1016/j.envexpbot.2020.103990
[48]

Zhang Q, Zhang H, Sun L, Fan G, Ye M, et al. 2018. The genetic architecture of floral traits in the woody plant Prunus mume. Nature Communications 9:1702

doi: 10.1038/s41467-018-04093-z
[49]

Guo L, Winzer T, Yang X, Li Y, Ning Z, et al. 2018. The opium poppy genome and morphinan production. Science 362:343

doi: 10.1126/science.aat4096
[50]

Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131:452−62

doi: 10.1016/j.cell.2007.10.022
[51]

Freeling M. 2009. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annual Review of Plant Biology 60:433−53

doi: 10.1146/annurev.arplant.043008.092122
[52]

Melters DP, Bradnam KR, Young HA, Telis N, May MR, et al. 2013. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology 14:R10

doi: 10.1186/gb-2013-14-1-r10
[53]

Huang CY, Chen P, Huang MD, Tsou CH, Jane WN, et al. 2013. Tandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor. PNAS 110:14480−85

doi: 10.1073/pnas.1305299110
[54]

Zhang R, Xue C, Liu G, Liu X, Zhang M, et al. 2017. Segmental duplication of chromosome 11 and its implications for cell division and genome-wide expression in rice. Scientific Reports 7:2689

doi: 10.1038/s41598-017-02796-9
[55]

Zhang Z, Yuan L, Liu X, Chen X, Wang X. 2018. Evolution analysis of Dof transcription factor family and their expression in response to multiple abiotic stresses in Malus domestica. Gene 639:137−48

doi: 10.1016/j.gene.2017.09.039
[56]

Zou Z, Zhu J, Zhang X. 2019. Genome-wide identification and characterization of the Dof gene family in cassava (Manihot esculenta). Gene 687:298−307

doi: 10.1016/j.gene.2018.11.053
[57]

Nan H, Ludlow RA, Lu M, An H. 2021. Genome-wide analysis of Dof genes and their response to abiotic stress in rose (Rosa chinensis). Frontiers in Genetics 12:53873

doi: 10.3389/fgene.2021.538733
[58]

Zhang S, Liu L, Yang R, Wang X. 2020. Genome size evolution mediated by Gypsy retrotransposons in brassicaceae. Genomics Proteomics & Bioinformatics 18:321−32

doi: 10.1016/j.gpb.2018.07.009
[59]

Hsu C, Chen SY, Lai PH, Hsiao YY, Tsai WC, et al. 2020. Identification of high-copy number long terminal repeat retrotransposons and their expansion in Phalaenopsis orchids. BMC Genomics 21:807

doi: 10.1186/s12864-020-07221-6
[60]

De Smet R, Van de Peer Y. 2012. Redundancy and rewiring of genetic networks following genome-wide duplication events. Current Opinion in Plant Biology 15:168−76

doi: 10.1016/j.pbi.2012.01.003
[61]

Kim YM, Kim S, Koo N, Shin AY, Yeom SI, et al. 2017. Genome analysis of Hibiscus syriacus provides insights of polyploidization and indeterminate flowering in woody plants. DNA Research 24:71−80

doi: 10.1093/dnares/dsw049
[62]

Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, et al. 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:148−52

doi: 10.1038/nature22380
[63]

Zhang L, Chen F, Zhang X, Li Z, Zhao Y, et al. 2020. The water lily genome and the early evolution of flowering plants. Nature 577:79

doi: 10.1038/s41586-019-1852-5
[64]

Qin G, Xu C, Ming R, Tang H, Guyot R, et al. 2017. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. The Plant Journal 91:1108−28

doi: 10.1111/tpj.13625
[65]

Wai CM, Weise SE, Ozersky P, Mockler TC, Michael TP, et al. 2019. Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. Plos Genetics 15:e1008209

doi: 10.1371/journal.pgen.1008209
[66]

Sjödin P, Hedman H, Shavorskaya O, Finet C, Lascoux M, et al. 2007. Recent degeneration of an old duplicated flowering time gene in Brassica nigra. Heredity 98:375−84

doi: 10.1038/sj.hdy.6800951
[67]

Salman-Minkov A, Sabath N, Mayrose I. 2016. Whole-genome duplication as a key factor in crop domestication. Nature Plants 2:16115

doi: 10.1038/nplants.2016.115
[68]

Seelanan T, Brubaker CL, Stewart JM, Craven LA, Wendel JF. 1999. Molecular systematics of Australian Gossypium section Grandicalyx (Malvaceae). Systematic Botany 24:183−208

doi: 10.2307/2419548
[69]

Caicedo AL, Schaal BA. 2004. Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Molecular Ecology 13:1871−82

doi: 10.1111/j.1365-294X.2004.02191.x
[70]

Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, et al. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. PNAS 99:6080−4

doi: 10.1073/pnas.052125199
[71]

Li C, Zhou A, Sang T. 2006. Rice domestication by reducing shattering. Science 311:1936−39

doi: 10.1126/science.1123604
[72]

Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, et al. 2005. An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617−30

doi: 10.1534/genetics.104.032086
[73]

Faust M, Timon B. 1995. Origin and dissemination of peach. In Horticultural Reviews, ed. Janick J, vol 17. New York: John Wiley & Sons. pp. 331−79 https://doi.org/10.1002/9780470650585.ch10

[74]

Yi X, Yu X, Chen J, Zhang M, Liu S, et al. 2020. The genome of Chinese flowering cherry (Cerasus serrulata) provides new insights into Cerasus species. Horticulture Research 7:165

doi: 10.1038/s41438-020-00382-1
[75]

Huang L, Yang M, Li L, Li H, Yang D, et al. 2018. Whole genome re-sequencing reveals evolutionary patterns of sacred lotus (Nelumbo nucifera). Journal of Integrative Plant Biology 60:2−15

doi: 10.1111/jipb.12606
[76]

Liu Z, Zhu H, Zhou J, Jiang S, Wang Y, et al. 2020. Resequencing of 296 cultivated and wild lotus accessions unravels its evolution and breeding history. The Plant Journal 104:1673−84

doi: 10.1111/tpj.15029
[77]

Huang X, Liu J, Zhu W, Atzberger C, Liu Q. 2019. The optimal threshold and vegetation index time series for retrieving crop phenology based on a modified dynamic threshold method. Remote Sensing 11:2725

doi: 10.3390/rs11232725
[78]

da Silveira Falavigna V, Guitton B, Costes E, Andrés F. 2019. I want to (Bud) break free: the potential role of DAM and SVP-like genes in regulating dormancy cycle in temperate fruit trees. Frontiers in Plant Science 9:1900

doi: 10.3389/fpls.2018.01990
[79]

Zhang Y, Yu D, Liu C, Gai S. 2018. Dynamic of carbohydrate metabolism and the related genes highlights PPP pathway activation during chilling induced bud dormancy release in tree peony (Paeonia suffruticosa). Scientia Horticulturae 242:36−43

doi: 10.1016/j.scienta.2018.07.022
[80]

Zhong W, Gao Z, Zhuang W, Shi T, Zhang Z, et al. 2013. Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot. Plant Molecular Biology 83:247−64

doi: 10.1007/s11103-013-0086-4
[81]

de la Fuente L, Conesa A, Lloret A, Badenes ML, Ríos G. 2015. Genome-wide changes in histone H3 lysine 27 trimethylation associated with bud dormancy release in peach. Tree Genetics & Genomes 11:45

doi: 10.1007/s11295-015-0869-7
[82]

Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D. 2011. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233:971−83

doi: 10.1007/s00425-011-1358-3
[83]

Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K. 2008. Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of Japanese apricot. Journal of the American Society for Horticultural Science 133:708−16

doi: 10.21273/JASHS.133.5.708
[84]

Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, et al. 2011. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiology 157:485−97

doi: 10.1104/pp.111.181982
[85]

Fornara F, de Montaigu A, Coupland G. 2010. SnapShot: Control of flowering in Arabidopsis. Cell 141:550

doi: 10.1016/j.cell.2010.04.024
[86]

Fujiwara S, Nakagawa M, Oda A, Kato K, Mizoguchi T. 2010. Photoperiod pathway regulates expression of MAF5 and FLC that encode MADS-box transcription factors of the FLC family in Arabidopsis. Plant Biotechnology 27:447−54

doi: 10.5511/plantbiotechnology.10.0823b
[87]

Wang B, Zhang Q, Wang L, Duan K, Pan A, et al. 2011. The AGL6-like Gene CpAGL6, a Potential Regulator of Floral Time and Organ Identity in Wintersweet (Chimonanthus praecox). Journal of Plant Growth Regulation 30:343−52

doi: 10.1007/s00344-011-9196-x
[88]

Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, et al. 1998. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219−29

doi: 10.1016/S0092-8674(00)81465-8
[89]

Hung FY, Chen FF, Li CL, Chen C, Chen JH, et al. 2019. The LDL1/2-HDA6 histone modification complex interacts with TOC1 and regulates the core circadian clock components in Arabidopsis. Frontiers in Plant Science 10:233

doi: 10.3389/fpls.2019.00233
[90]

Li J, Pan B, Niu L, Chen M, Tang M, et al. 2018. Gibberellin Inhibits Floral Initiation in the Perennial Woody Plant Jatropha curcas. Journal of Plant Growth Regulation 37:999−1006

doi: 10.1007/s00344-018-9797-8
[91]

Zentella R, Zhang Z, Park M, Thomas SG, Endo A, et al. 2007. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. The Plant Cell 19:3037−57

doi: 10.1105/tpc.107.054999
[92]

Lu J, Yang W, Zhang Q. 2015. Genome-wide Identification and Characterization of the DELLA Subfamily in Prunus mume. Journal of the American Society for Horticultural Science 140:223−32

doi: 10.21273/jashs.140.3.223
[93]

Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, et al. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development 21:397−402

doi: 10.1101/gad.1518407
[94]

Wang J. 2014. Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany 65:4723−30

doi: 10.1093/jxb/eru246
[95]

Wei Q, Ma C, Xu Y, Wang T, Chen Y, et al. 2017. Control of chrysanthemum flowering through integration with an aging pathway. Nature Communications 8:829

doi: 10.1038/s41467-017-00812-0
[96]

Wang S, Beruto M, Xue J, Zhu F, Liu C, et al. 2015. Molecular cloning and potential function prediction of homologous SOC1 genes in tree peony. Plant Cell Reports 34:1459−71

doi: 10.1007/s00299-015-1800-2
[97]

Shibuya K. 2018. Molecular aspects of flower senescence and strategies to improve flower longevity. Breeding Science 68:99−108

doi: 10.1270/jsbbs.17081
[98]

Wojciechowska N, Sobieszczuk-Nowicka E, Bagniewska-Zadworna A. 2018. Plant organ senescence - regulation by manifold pathways. Plant Biology 20:167−81

doi: 10.1111/plb.12672
[99]

Pattyn J, Vaughan-Hirsch J, Van de Poel B. 2021. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. New Phytologist 229:770−82

doi: 10.1111/nph.16873
[100]

Yangkhamman P, Tanase K, Ichimura K, Fukai S. 2007. Depression of enzyme activities and gene expression of ACC synthase and ACC oxidase in cut carnation flowers under high-temperature conditions. Plant Growth Regulation 53:155−62

doi: 10.1007/s10725-007-9213-z
[101]

Rice LJ, Soós V, Ascough GD, Balázs E, Ördög V, et al. 2013. Ethylene- and dark-induced flower abscission in potted Plectranthus: Sensitivity, prevention by 1-MCP, and expression of ethylene biosynthetic genes. South African Journal of Botany 87:39−47

doi: 10.1016/j.sajb.2013.03.011
[102]

Huang LC, Lai UL, Yang SF, Chu MJ, Kuo CI, et al. 2007. Delayed flower senescence of Petunia hybrida plants transformed with antisense broccoli ACC synthase and ACC oxidase genes. Postharvest Biology and Technology 46:47−53

doi: 10.1016/j.postharvbio.2007.03.015
[103]

Shibuya K, Watanabe K, Ono M. 2018. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory. Plant Physiology and Biochemistry 131:53−57

doi: 10.1016/j.plaphy.2018.04.036
[104]

Zhou L, Zhang C, Fu J, Liu M, Zhang Y, et al. 2013. Molecular characterization and expression of ethylene biosynthetic genes during cut flower development in tree peony (Paeonia suffruticosa) in response to ethylene and functional analysis of PsACS1 in Arabidopsis thaliana. Journal of Plant Growth Regulation 32:362−75

doi: 10.1007/s00344-012-9306-4
[105]

Satoh S. 2011. Ethylene production and petal wilting during senescence of cut carnation (Dianthus caryophyllus) flowers and prolonging their vase life by genetic transformation. Journal of the Japanese Society for Horticultural Science 80:127−35

doi: 10.2503/jjshs1.80.127
[106]

Kinouchi T, Endo R, Yamashita A, Satoh S. 2006. Transformation of carnation with genes related to ethylene production and perception: towards generation of potted carnations with a longer display time. Plant Cell, Tissue and Organ Culture 86:27

doi: 10.1007/s11240-006-9093-3
[107]

Woltering EJ, Van Doorn WG. 1988. Role of ethylene in senescence of petals - morphological and taxonomical relationships. Journal of Experimental Botany 39:1605−16

doi: 10.1093/jxb/39.11.1605
[108]

Shahri W, Tahir I. 2011. Flower Senescence-Strategies and Some Associated Events. The Botanical Review 77:152−84

doi: 10.1007/s12229-011-9063-2
[109]

Kumar M, Singh VP, Arora A, Singh N. 2014. The role of abscisic acid (ABA) in ethylene insensitive Gladiolus (Gladiolus grandiflora Hort.) flower senescence. Acta Physiologiae Plantarum 36:151−59

doi: 10.1007/s11738-013-1395-6
[110]

Arrom L, Munné-Bosch S. 2012. Hormonal changes during flower development in floral tissues of Lilium. Planta 236:343−54

doi: 10.1007/s00425-012-1615-0
[111]

Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, et al. 2017. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in Plant Science 8:475

doi: 10.3389/fpls.2017.00475
[112]

Marciniak K, Kućko A, Wilmowicz E, Świdziński M, Przedniczek K, et al. 2018. Gibberellic acid affects the functioning of the flower abscission zone in Lupinus luteus via cooperation with the ethylene precursor independently of abscisic acid. Journal of Plant Physiology 229:170−74

doi: 10.1016/j.jplph.2018.07.014
[113]

Lü P, Zhang C, Liu J, Liu X, Jiang G, et al. 2014. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. The Plant Journal 78:578−90

doi: 10.1111/tpj.12494
[114]

Manohar M, Wang D, Manosalva PM, Choi HW, Kombrink E, Klessig DF. 2017. Members of the abscisic acid co-receptor PP2C protein family mediate salicylic acid-abscisic acid crosstalk. Plant Direct 1:e00020

doi: 10.1002/pld3.20
[115]

Hermann K, Kuhlemeier C. 2011. The genetic architecture of natural variation in flower morphology. Current Opinion in Plant Biology 14:60−65

doi: 10.1016/j.pbi.2010.09.012
[116]

Coito JL, Silva H, Ramos MJN, Montez M, Cunha J, et al. 2018. Vitis Flower Sex Specification Acts Downstream and Independently of the ABCDE Model Genes. Frontiers in Plant Science 9:1029

doi: 10.3389/fpls.2018.01029
[117]

Coen ES, Meyerowitz EM. 1991. The war of the whorls - genetic interactions controlling flower development. Nature 353:31−37

doi: 10.1038/353031a0
[118]

Theißen G. 2001. Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 4:75−85

doi: 10.1016/S1369-5266(00)00139-4
[119]

Theißen G, Saedler H. 2001. Floral quartets. Nature 409:469−71

doi: 10.1038/35054172
[120]

Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH. 2004. Four DEF-Like MADS box genes displayed distinct floral morphogenetic roles in Phaldenopsis orchid. Plant and Cell Physiology 45:831−44

doi: 10.1093/pcp/pch095
[121]

Ishimori M, Kawabata S. 2014. Conservation and diversification of floral homeotic MADS-box genes in Eustoma grandiflorum. Journal of the Japanese Society for Horticultural Science 83:172−80

doi: 10.2503/jjshs1.ch-098
[122]

Sasaki K, Yamaguchi H, Nakayama M, Aida R, Ohtsubo N. 2014. Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower morphology and inflorescence architecture. Plant Molecular Biology 86:319−34

doi: 10.1007/s11103-014-0231-8
[123]

Sawettalake N, Bunnag S, Wang Y, Shen L, Yu H. 2017. DOAP1 promotes flowering in the orchid Dendrobium chao praya smile. Frontiers in plant science 8:400

doi: 10.3389/fpls.2017.00400
[124]

Shchennikova AV, Shulga OA, Skryabin KG. 2018. Ectopic expression of the homeotic MADS-Box gene HAM31 (Helianthus annuus L.) in transgenic plants Nicotiana tabacum L. affect the gynoecium identity. Doklady Biochemistry and Biophysics 483:363−68

doi: 10.1134/S1607672918060182
[125]

Wang Q, Dan N, Zhang X, Lin S, Bao M, et al. 2020. Identification, Characterization and Functional Analysis of C-Class Genes Associated with Double Flower Trait in Carnation (Dianthus caryphyllus L.). Plants-Basel 9:87

doi: 10.3390/plants9010087
[126]

Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, et al. 2012. C- and D-class MADS-Box Genes from Phalaenopsis equestris (Orchidaceae) Display Functions in Gynostemium and Ovule Development. Plant and Cell Physiology 53:1053−67

doi: 10.1093/pcp/pcs048
[127]

Xu Y, Zhang L, Xie H, Zhang YQ, Oliveira MM, Ma RC. 2008. Expression analysis and genetic mapping of three SEPALLATA-like genes from peach (Prunus persica (L.) Batsch). Tree Genetics & Genomes 4:693−703

doi: 10.1007/s11295-008-0143-3
[128]

Sasaki K, Yoshioka S, Aida R, Ohtsubo N. 2021. Production of petaloid phenotype in the reproductive organs of compound flowerheads by the co-suppression of class-C genes in hexaploid Chrysanthemum morifolium. Planta 253:100

doi: 10.1007/s00425-021-03605-4
[129]

Pan ZJ, Chen YY, Du JS, Chen YY, Chung MC, et al. 2014. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytologist 202:1024−42

doi: 10.1111/nph.12723
[130]

Ishii HS, Harder LD. 2006. The size of individual Delphinium flowers and the opportunity for geitonogamous pollination. Functional Ecology 20:1115−23

doi: 10.1111/j.1365-2435.2006.01181.x
[131]

Chen QXC, Guo Y, Warner RM. 2019. Identification of Quantitative Trait Loci for Component Traits of Flowering Capacity Across Temperature in Petunia. G3 Genes Genomes Genetics 9:3601−10

doi: 10.1534/g3.119.400653
[132]

Galliot C, Hoballah ME, Kuhlemeier C, Stuurman J. 2006. Genetics of flower size and nectar volume in Petunia pollination syndromes. Planta 225:203−12

doi: 10.1007/s00425-006-0342-9
[133]

Reinert S, Gao Q, Ferguson B, Portlas ZM, Prasifka JR, et al. 2020. Seed and floret size parameters of sunflower are determined by partially overlapping sets of quantitative trait loci with epistatic interactions. Molecular Genetics and Genomics 295:143−54

doi: 10.1007/s00438-019-01610-7
[134]

Moyers BT, Owens GL, Baute GJ, Rieseberg LH. 2017. The genetic architecture of UV floral patterning in sunflower. Annals of Botany 120:39−50

doi: 10.1093/aob/mcx038
[135]

Zhu R, Gao Y, Zhang Q. 2014. Quantitative trait locus mapping of floral and related traits using an F-2 population of Aquilegia. Plant Breeding 133:153−61

doi: 10.1111/pbr.12128
[136]

Han Y, Tang A, Wan H, Zhang T, Cheng T, et al. 2018. An APETALA2 Homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Frontiers in Plant Science 9:481

doi: 10.3389/fpls.2018.00481
[137]

Bourke PM, Gitonga VW, Voorrips RE, Visser RGF, Krens FA, et al. 2018. Multi-environment QTL analysis of plant and flower morphological traits in tetraploid rose. Theoretical and Applied Genetics 131:2055−69

doi: 10.1007/s00122-018-3132-4
[138]

Meng G, Zhu G, Fang W, Chen C, Wang X, et al. 2019. Identification of loci for single/double flower trait by combining genome-wide association analysis and bulked segregant analysis in peach (Prunus persica). Plant Breeding 138:360−67

doi: 10.1111/pbr.12673
[139]

Lucibelli F, Valoroso MC, Aceto S. 2020. Radial or Bilateral? The molecular basis of floral symmetry Genes 11:395

doi: 10.3390/genes11040395
[140]

Garcês HMP, Spencer VMR, Kim M. 2016. Control of floret symmetry by RAY3, SvDIV1B, and SvRAD in the capitulum of Senecio vulgaris. Plant Physiology 171:2055−68

doi: 10.1104/pp.16.00395
[141]

Feng X, Zhao Z, Tian Z, Xu S, Luo Y, et al. 2006. Control of petal shape and floral zygomorphy in Lotus japonicus. PNAS 103:4970−75

doi: 10.1073/pnas.0600681103
[142]

Wang Z, Luo Y, Li X, Wang L, Xu S, et al. 2008. Genetic control of floral zygomorphy in pea (Pisum sativum L.). PNAS 105:10414−19

doi: 10.1073/pnas.0803291105
[143]

Hileman LC. 2014. Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philosophical Transactions of the Royal Society B-Biological Sciences 369:20130348

doi: 10.1098/rstb.2013.0348
[144]

Sengupta A, Hileman LC. 2018. Novel Traits, Flower Symmetry, and Transcriptional Autoregulation: New Hypotheses From Bioinformatic and Experimental Data. Frontiers in Plant Science 9:1561

doi: 10.3389/fpls.2018.01561
[145]

Raimundo J, Sobral R, Bailey P, Azevedo H, Galego L, et al. 2013. A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. The Plant Journal 75:527−38

doi: 10.1111/tpj.12225
[146]

Yuan C, Huang D, Yang Y, Sun M, Cheng TR, et al. 2020. CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate floral symmetry development in Chrysanthemum morifolium. Plant Molecular Biology 103:159−71

doi: 10.1007/s11103-020-00981-5
[147]

Specht CD, Howarth DG. 2015. Adaptation in flower form: a comparative evodevo approach. New Phytologist 206:74−90

doi: 10.1111/nph.13198
[148]

Moyroud E, Glover BJ. 2017. The evolution of diverse floral morphologies. Current Biology 27:R941−R951

doi: 10.1016/j.cub.2017.06.053
[149]

Jasinski S, Vialette-Guiraud ACM, Scutt CP. 2010. The evolutionary-developmental analysis of plant microRNAs. Philosophical Transactions of the Royal Society B-Biological Sciences 365:469−76

doi: 10.1098/rstb.2009.0246
[150]

Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. 1997. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. The Plant Cell 9:841−57

doi: 10.1105/tpc.9.6.841
[151]

Mallory AC, Dugas DV, Bartel DP, Bartel B. 2004. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Current Biology 14:1035−46

doi: 10.1016/j.cub.2004.06.022
[152]

Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, et al. 2004. CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131:915−22

doi: 10.1242/dev.00993
[153]

Zhong J, Powell S, Preston JC. 2016. Organ boundary NAC-domain transcription factors are implicated in the evolution of petal fusion. Plant Biology 18:893−902

doi: 10.1111/plb.12493
[154]

Laufs P, Peaucelle A, Morin H, Traas J. 2004. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311−22

doi: 10.1242/dev.01320
[155]

Martins AE, Camargo MGG, Morellato LPC. 2021. Flowering phenology and the influence of seasonality in flower conspicuousness for bees. Frontiers in Plant Science 11:594538

doi: 10.3389/fpls.2020.594538
[156]

Holton TA, Tanaka Y. 1994. Blue roses — a pigment of our imagination. Trends in Biotechnology 12:40−42

doi: 10.1016/0167-7799(94)90097-3
[157]

Hoshino A, Mizuno T, Shimizu K, Mori S, Fukada-Tanaka S, et al. 2019. Generation of yellow flowers of the japanese morning glory by engineering its flavonoid biosynthetic pathway toward aurones. Plant and Cell Physiology 60:1871−79

doi: 10.1093/pcp/pcz101
[158]

Johnson ET, Yi HK, Shin BC, Oh BJ, Cheong HS, et al. 1999. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant Journal 19:81−85

doi: 10.1046/j.1365-313X.1999.00502.x
[159]

Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology 57:761−80

doi: 10.1146/annurev.arplant.57.032905.105248
[160]

Peng Y, Lin-Wang K, Cooney JM, Wang T, Espley RV, et al. 2019. Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species). Horticulture Research 6:3

doi: 10.1038/s41438-018-0076-4
[161]

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science 20:176−85

doi: 10.1016/j.tplants.2014.12.001
[162]

Zhao D, Tao J. 2015. Recent advances on the development and regulation of flower color in ornamental plants. Frontiers in Plant Science 6:261

doi: 10.3389/fpls.2015.00261
[163]

Lou Q, Liu Y, Qi Y, Jiao S, Tian F, et al. 2014. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. Journal of Experimental Botany 65:3157−64

doi: 10.1093/jxb/eru168
[164]

Hong Y, Tang X, Huang H, Zhang Y, Dai S. 2015. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genomics 16:202

doi: 10.1186/s12864-015-1428-1
[165]

Chen S, Li C, Zhu X, Deng Y, Sun W, et al. 2012. The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. Biologia Plantarum 56:458−64

doi: 10.1007/s10535-012-0069-3
[166]

Brugliera F, Tao G, Tems U, Kalc G, Mouradova E, et al. 2013. Violet/blue Chrysanthemums-metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant & Cell Physiology 54:1696−710

doi: 10.1093/pcp/pct110
[167]

Christaki E, Bonos E, Giannenas I, Florou-Paneri P. 2013. Functional properties of carotenoids originating from algae. Journal of the Science of Food and Agriculture 93:5−11

doi: 10.1002/jsfa.5902
[168]

Yamamizo C, Kishimoto S, Ohmiya A. 2010. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. Journal of Experimental Botany 61:709−19

doi: 10.1093/jxb/erp335
[169]

Yamagishi M, Kishimoto S, Nakayama M. 2010. Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily. Plant Breeding 129:100−7

doi: 10.1111/j.1439-0523.2009.01656.x
[170]

Chiou CY, Pan HA, Chuang YN, Yeh KW. 2010. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta 232:937−48

doi: 10.1007/s00425-010-1222-x
[171]

Sun T, Li L. 2020. Toward the 'golden' era: The status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Science 290:110331

doi: 10.1016/j.plantsci.2019.110331
[172]

Misawa N, Yamano S, Linden H, de Felipe MR, Lucas M, et al. 1993. Functional expression of the erwinia-uredovora carotenoid biosynthesis gene crtl in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon. The Plant Journal 4:833−40

doi: 10.1046/j.1365-313X.1993.04050833.x
[173]

Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, et al. 2007. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Reports 26:951−59

doi: 10.1007/s00299-006-0302-7
[174]

Li X, Tang D, Du H, Shi Y. 2018. Transcriptome sequencing and biochemical analysis of perianths and coronas reveal flower color formation in Narcissus pseudonarcissus. International Journal of Molecular Sciences 19:4006

doi: 10.3390/ijms19124006
[175]

Li L, Ye J, Li H, Shi Q. 2020. Characterization of metabolites and transcripts involved in flower pigmentation in Primula vulgaris. Frontiers in Plant Science 11:572517

doi: 10.3389/fpls.2020.572517
[176]

Iijima L, Kishimoto S, Ohmiya A, Yagi M, Okamoto E, et al. 2020. Esterified carotenoids are synthesized in petals of carnation (Dianthus caryophyllus) and accumulate in differentiated chromoplasts. Scientific Reports 10:15256

doi: 10.1038/s41598-020-72078-4
[177]

Meng Y, Wang Z, Wang Y, Wang C, Zhu B, et al. 2019. The MYB Activator WHITE PETAL1 Associates with MtTT8 and MtWD40-1 to Regulate Carotenoid-Derived Flower Pigmentation in Medicago truncatula. The Plant Cell 31:2751−67

doi: 10.1105/tpc.19.00480
[178]

Li BJ, Zheng BQ, Wang JY, Tsai WC, Lu HC, et al. 2020. New insight into the molecular mechanism of colour differentiation among floral segments in orchids. Communications Biology 3:89

doi: 10.1038/s42003-020-0821-8
[179]

Pavokovic D, Krsnik-Rasol M. 2011. Complex Biochemistry and Biotechnological Production of Betalains. Food Technology and Biotechnology 49:145−55

[180]

Nishihara M, Nakatsuka T. 2010. Genetic engineering of novel flower colors in floricultural plants: recent advances via transgenic approaches. In Protocols for In Vitro Propagation of Ornamentals Plants, Methods in Molecular Biology (Methods and Protocols), ed. Jain SM, Ochatt SJ. vol 589. London: Humana Press, Springer Science+Business Media. pp. 325−47 https://doi.org/10.1007/978-1-60327-114-1_29

[181]

Henarejos-Escudero P, Guadarrama-Flores B, García-Carmona F, Gandía-Herrero F. 2018. Digestive glands extraction and precise pigment analysis support the exclusion of the carnivorous plant Dionaea muscipula Ellis from the Caryophyllales order. Plant Science 274:342−48

doi: 10.1016/j.plantsci.2018.06.013
[182]

Gandía-Herrero F, García-Carmona F. 2020. The dawn of betalains. New Phytologist 227:664−66

doi: 10.1111/nph.16295
[183]

Polturak G, Aharoni A. 2018. "La vie en rose'': biosynthesis, sources, and applications of betalain pigments. Molecular Plant 11:7−22

doi: 10.1016/j.molp.2017.10.008
[184]

Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, et al. 2012. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nature Genetics 44:816−20

doi: 10.1038/ng.2297
[185]

Hatlestad GJ, Akhavan NA, Sunnadeniya RM, Elam L, Cargile S, et al. 2015. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway. Nature Genetics 47:92−96

doi: 10.1038/ng.3163
[186]

Wu Y, Xu J, Han X, Qiao G, Yang K, et al. 2020. Comparative transcriptome analysis combining SMRT- and illumina-based RNA-Seq identifies potential candidate genes involved in betalain biosynthesis in Pitaya fruit. International Journal of Molecular Sciences 21:3288

doi: 10.3390/ijms21093288
[187]

Zhou Z, Gao H, Ming J, Ding Z, Lin X, et al. 2020. Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying Peel and pulp color formation. BMC Genomics 21:734

doi: 10.1186/s12864-020-07133-5
[188]

Suzuki M, Miyahara T, Tokumoto H, Hakamatsuka T, Goda Y, et al. 2014. Transposon-mediated mutation of CYP76AD3 affects betalain synthesis and produces variegated flowers in four o'clock (Mirabilis jalapa). Journal of Plant Physiology 171:1586−90

doi: 10.1016/j.jplph.2014.07.010
[189]

Sasaki N, Abe Y, Goda Y, Adachi T, Kasahara K, et al. 2009. Detection of DOPA 4,5-dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant and Cell Physiology 50:1012−16

doi: 10.1093/pcp/pcp053
[190]

Ramya M, An HR, Baek YS, Reddy KE, Park PH. 2018. Orchid floral volatiles: Biosynthesis genes and transcriptional regulations. Scientia Horticulturae 235:62−69

doi: 10.1016/j.scienta.2017.12.049
[191]

Knudsen JT, Eriksson R, Gershenzon J, Ståhl B. 2006. Diversity and distribution of floral scent. The Botanical Review 72:1−120

doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
[192]

Dudareva N, Pichersky E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiology 122:627−33

doi: 10.1104/pp.122.3.627
[193]

Hsiao YY, Tsai WC, Kuoh CS, Huang TH, Wang HC, et al. 2006. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biology 6:14

doi: 10.1186/1471-2229-6-14
[194]

Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, et al. 2008. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. The Plant Journal 55:719−33

doi: 10.1111/j.1365-313X.2008.03547.x
[195]

Chan W-S, Abdullah JO, Namasivayam P. 2011. Isolation, cloning and characterization of fragrance-related transcripts from Vanda Mimi Palmer. Scientia Horticulturae 127:388−97

doi: 10.1016/j.scienta.2010.09.024
[196]

Zhang Y, Li C, Wang S, Yuan M, Li B, et al. 2021. Transcriptome and volatile compounds profiling analyses provide insights into the molecular mechanism underlying the floral fragrance of tree peony. Industrial Crops and Products 162:113286

doi: 10.1016/j.indcrop.2021.113286
[197]

Boatright J, Negre F, Chen X, Kish CM, Wood B, et al. 2004. Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiology 135:1993−2011

doi: 10.1104/pp.104.045468
[198]

Zhang T, Bao F, Yang Y, Hu L, Ding A, et al. 2020. A comparative analysis of floral scent compounds in intraspecific cultivars of Prunus mume with Different Corolla Colours. Molecules 25:11

doi: 10.3390/molecules25010145
[199]

Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC. 2005. ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell 17:1612−24

doi: 10.1105/tpc.104.028837
[200]

Tóth G, Barabás C, Tóth A, Kéry Á, Béni S, et al. 2016. Characterization of antioxidant phenolics in Syringa vulgaris L. flowers and fruits by HPLC-DAD-ESI-MS. Biomedical Chromatography 30:923−32

doi: 10.1002/bmc.3630
[201]

Dhandapani S, Jin JJ, Sridhar V, Sarojam R, Chua NH, Jang IC. 2017. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds. BMC Genomics 18:463

doi: 10.1186/s12864-017-3846-8
[202]

Dexter R, Qualley A, Kish CM, Ma CJ, Koeduka T, et al. 2007. Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. The Plant Journal 49:265−75

doi: 10.1111/j.1365-313X.2006.02954.x
[203]

Underwood BA, Tieman DM, Shibuya K, Dexter RJ, Loucas HM, et al. 2005. Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiology 138:255−66

doi: 10.1104/pp.104.051144
[204]

Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, et al. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. Journal of Biological Chemistry 281:23357−66

doi: 10.1074/jbc.M602708200
[205]

Orlova I, Marshall-Colón A, Schnepp J, Wood B, Varbanova M, et al. 2006. Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. The Plant Cell 18:3458−75

doi: 10.1105/tpc.106.046227
[206]

Negre F, Kish CM, Boatright J, Underwood B, Shibuya K, et al. 2003. Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. The Plant Cell 15:2992−3006

doi: 10.1105/tpc.016766
[207]

Dexter RJ, Verdonk JC, Underwood BA, Shibuya K, Schmelz EA, et al. 2008. Tissue-specific PhBPBT expression is differentially regulated in response to endogenous ethylene. Journal of Experimental Botany 59:609−18

doi: 10.1093/jxb/erm337
[208]

Spitzer-Rimon B, Farhi M, Albo B, Cna'ani A, Ben Zvi MM, et al. 2012. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in Petunia. Plant Cell 24:5089−105

doi: 10.1105/tpc.112.105247
[209]

Bao F, Zhang T, Ding A, Ding A, Yang W, et al. 2020. Metabolic, enzymatic activity, and transcriptomic analysis reveals the mechanism underlying the lack of characteristic floral scent in apricot mei varieties. Frontiers in Plant Science 11:57498

doi: 10.3389/fpls.2020.574982
[210]

Schade F, Legge RL, Thompson JE. 2001. Fragrance volatiles of developing and senescing carnation flowers. Phytochemistry 56:703−10

doi: 10.1016/S0031-9422(00)00483-0
[211]

Jemia MB, Senatore F, Bruno M, Bancheva S. 2015. Components from the Essential oil of Centaurea aeolica Guss. and C-diluta Aiton from Sicily, Italy. Records of Natural Products 9:580−85

[212]

Gong W, Xu S, Liu Y, Wang C, Martin K, et al. 2019. Chemical composition of floral scents from three Plumeria rubra L. (Apocynaceae) forms linked to petal color proprieties. Biochemical Systematics and Ecology 85:54−59

doi: 10.1016/j.bse.2019.05.005
[213]

Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, et al. 2000. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. The Plant Cell 12:949−61

doi: 10.1105/tpc.12.6.949
[214]

Ramya M, Kwon OK, An HR, Park PM, Baek YS, et al. 2017. Floral scent: Regulation and role of MYB transcription factors. Phytochemistry Letters 19:114−20

doi: 10.1016/j.phytol.2016.12.015
[215]

Schwab W, Davidovich-Rikanati R, Lewinsohn E. 2008. Biosynthesis of plant-derived flavor compounds. The Plant Journal 54:712−32

doi: 10.1111/j.1365-313X.2008.03446.x
[216]

Shinoyama H, Mochizuki A, Nomura Y, Kamada H. 2008. Environmental risk assessment of genetically modified chrysanthemums containing a modified cry1Ab gene from Bacillus thuringiensis. Plant Biotechnology 25:17−29

doi: 10.5511/plantbiotechnology.25.17
[217]

Takatsu Y, Nishizawa Y, Hibi T, Akutsu K. 1999. Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Scientia Horticulturae 82:113−23

doi: 10.1016/S0304-4238(99)00034-5
[218]

Kumar S, Raj SK, Sharma AK, Varma HN. 2012. Genetic transformation and development of Cucumber mosaic virus resistant transgenic plants of Chrysanthemum morifolium cv. Kundan. Scientia Horticulturae 134:40−45

doi: 10.1016/j.scienta.2011.10.019
[219]

Núñez de Cáceres González FF, Davey MR, Cancho Sanchez E, Wilson ZA. 2015. Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene. Plant Cell Reports 34:1201−9

doi: 10.1007/s00299-015-1778-9
[220]

Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, et al. 2011. Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotechnology Letters 33:1249−55

doi: 10.1007/s10529-011-0550-7
[221]

Kamo K, Thilmony R, Bauchan G. 2019. Transgenic Lilium longiflorum plants containing the bar-uidA gene controlled by the rice RPC1, Agrobacterium rolD, mas2, and CaMV 35S promoters. Plant Cell Tissue and Organ Culture 136:303−12

doi: 10.1007/s11240-018-1515-5
[222]

Vieira P, Wantoch S, Lilley CJ, Chitwood DJ, Atkinson HJ, et al. 2015. Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. 'Nellie White'. Transgenic Research 24:421−32

doi: 10.1007/s11248-014-9848-2
[223]

Kamo K, Gera A, Cohen J, Hammond J, Blowers A, et al. 2005. Transgenic Gladiolus plants transformed with the bean yellow mosaic virus coat-protein gene in either sense or antisense orientation. Plant Cell Reports 23:54−63

doi: 10.1007/s00299-004-0888-6
[224]

Kamo K, Jordan R, Guaragna MA, Hsu HT, Ueng P. 2010. Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase or coat protein subgroup II gene from Cucumber mosaic virus. Plant Cell Reports 29:695−704

doi: 10.1007/s00299-010-0855-3
[225]

Kamo K, Aebig J, Guaragna MA, James C, Hsu HT, et al. 2012. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus. Plant Cell, Tissue and Organ Culture 110:13−21

doi: 10.1007/s11240-012-0124-y
[226]

Chang C, Chen YC, Hsu YH, Wu JT, Hu CC, et al. 2005. Transgenic resistance to Cymbidium mosaic virus in Dendrobium expressing the viral capsid protein gene. Transgenic Research 14:41−6

doi: 10.1007/s11248-004-2373-y
[227]

Kuehnle AR, Sugii N. 1992. Transformation of Dendrobium orchid using particle bombardment of protocorms. Plant Cell Reports 11:484−88

doi: 10.1007/BF00232696
[228]

Liao LJ, Pan IC, Chan YL, Hsu YH, Chen WH, et al. 2004. Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium Mosaic Virus is a manifestation of RNA-mediated resistance. Molecular Breeding 13:229−42

doi: 10.1023/B:MOLB.0000022527.68551.30
[229]

Gargul JM, Mibus H, Serek M. 2015. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. Plant Biotechnology Journal 13:51−61

doi: 10.1111/pbi.12234
[230]

Li X, Gasic K, Cammue B, Broekaert W, Korban SS. 2003. Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226−32

doi: 10.1007/s00425-003-1093-5
[231]

Ramakrishna A, Gill SS. 2018. Metabolic adaptations in plants during abiotic stress. Boca Raton: CRC Press. 442 pp. https://doi.org/10.1201/b22206

[232]

He X, Wang C, Wang H, Li L, Wang C. 2020. The function of MAPK cascades in response to various stresses in horticultural plants. Frontiers in Plant Science 11:12

doi: 10.3389/fpls.2020.00952
[233]

Song AP, Hu YH, Ding L, Zhang X, Li PL, et al. 2018. Comprehensive analysis of mitogen-activated protein kinase cascades in chrysanthemum. PeerJ 6:e5037

doi: 10.7717/peerj.5037
[234]

Hollender CA, Pascal T, Tabb A, Hadiarto T, Srinivasan C, et al. 2018. Loss of a highly conserved sterile alpha motif domain gene (WEEP) results in pendulous branch growth in peach trees. PNAS 115:E4690−E4699

doi: 10.1073/pnas.1800138115
[235]

Zhuo X, Zheng T, Zhang Z, Li S, Zhang Y, et al. 2021. Bulked segregant RNA sequencing (BSR-seq) identifies a novel allele associated with weeping traits in prunus mume. Frontiers of Agricultural Science and Engineering 8:196−214

doi: 10.15302/j-fase-2020379
[236]

Hollender CA, Hadiarto T, Srinivasan C, Scorza R, Dardick C. 2016. A brachytic dwarfism trait (dw) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c. New Phytologist 210:227−39

doi: 10.1111/nph.13772
[237]

Lu Z, Niu L, Chagné D, Cui G, Pan L, et al. 2016. Fine mapping of the temperature-sensitive semi-dwarf (Tssd) locus regulating the internode length in peach (Prunus persica). Molecular Breeding 36:20

doi: 10.1007/s11032-016-0442-6
[238]

Islam MA, Lütken H, Haugslien S, Blystad DR, Torre S, et al. 2013. Overexpression of the AtSHI gene in poinsettia, Euphorbia pulcherrima, results in compact plants. Plos One 8:e53377

doi: 10.1371/journal.pone.0053377
[239]

Koike Y, Hoshino Y, Mii M, Nakano M. 2003. Horticultural characterization of Angelonia salicariifolia plants transformed with wild-type strains of Agrobacterium rhizogenes. Plant Cell Reports 21:981−87

doi: 10.1007/s00299-003-0608-7
[240]

Pérez de la Torre MC, Fernández P, Greppi JA, Coviella MA, Fernández MN, et al. 2018. Transformation of Mecardonia (Plantaginaceae) with wild-type Agrobacterium rhizogenes efficiently improves compact growth, branching and flower related ornamental traits. Scientia Horticulturae 234:300−11

doi: 10.1016/j.scienta.2018.02.047
[241]

Bonnafous F, Fievet G, Blanchet N, Boniface MC, Carrère S, et al. 2018. Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids. Theoretical and Applied Genetics 131:319−32

doi: 10.1007/s00122-017-3003-4
[242]

Kao CH. 2000. On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci. Genetics 156:855−65

doi: 10.1093/genetics/156.2.855
[243]

Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, et al. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721−26

doi: 10.1038/335721a0
[244]

Zhang J, Zhang Q, Cheng T, Yang W, Pan H, et al. 2015. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA Research 22:183−91

doi: 10.1093/dnares/dsv003
[245]

Li J, Xu Y, Wang Z. 2019. Construction of a high-density genetic map by RNA sequencing and eQTL analysis for stem length and diameter in Dendrobium (Dendrobium nobile × Dendrobium wardianum). Industrial Crops and Products 128:48−54

doi: 10.1016/j.indcrop.2018.10.073
[246]

Li S, Lv S, Yu K, Wang Z, Li Y, et al. 2019. Construction of a high-density genetic map of tree peony (Paeonia suffruticosa Andr. Moutan) using restriction site associated DNA sequencing (RADseq) approach. Tree Genetics & Genomes 15:63

doi: 10.1007/s11295-019-1367-0
[247]

Zhang Q, Li L, VanBuren R, Liu Y, Yang M, et al. 2014. Optimization of linkage mapping strategy and construction of a high-density American lotus linkage map. BMC Genomics 15:372

doi: 10.1186/1471-2164-15-372
[248]

Otagaki S, Ogawa Y, Hibrand-Saint Oyant L, Foucher F, Kawamura K, et al. 2015. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses. Plant Biology 17:808−15

doi: 10.1111/plb.12299
[249]

Alqudah AM, Sallam A, Baenziger PS, Börner A. 2020. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley - A review. Journal of Advanced Research 22:119−35

doi: 10.1016/j.jare.2019.10.013
[250]

Michelmore RW, Paran I, Kesseli RV. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS 88:9828−32

doi: 10.1073/pnas.88.21.9828
[251]

Zou C, Wang P, Xu Y. 2016. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal 14:1941−55

doi: 10.1111/pbi.12559
[252]

Dougherty L, Singh R, Brown S, Dardick C, Xu K. 2018. Exploring DNA variant segregation types in pooled genome sequencing enables effective mapping of weeping trait in Malus. Journal of Experimental Botany 69:1499−516

doi: 10.1093/jxb/erx490
[253]

Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A. 2019. Virus-induced gene silencing: empowering genetics in non-model organisms. Journal of Experimental Botany 70:757−70

doi: 10.1093/jxb/ery411
[254]

Becker A, Lange M. 2010. VIGS - genomics goes functional. Trends in Plant Science 15:1−4

doi: 10.1016/j.tplants.2009.09.002
[255]

Lu J, Sun J, Jiang A, Bai M, Fan C, et al. 2020. Alternate expression of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitates day-neutral response in Rosa chinensis. Journal of Experimental Botany 71:4057−68

doi: 10.1093/jxb/eraa161
[256]

Lai PH, Huang LM, Pan ZJ, Jane WN, Chung MC, et al. 2020. PeERF1, a SHINE-Like transcription factor, is involved in nanoridge development on lip epidermis of Phalaenopsis flowers. Frontiers in Plant Science 10:1709

doi: 10.3389/fpls.2019.01709
[257]

Gaj T, Gersbach CA, Barbas CF. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31:397−405

doi: 10.1016/j.tibtech.2013.04.004
[258]

Bibikova M, Golic M, Golic KG, Carroll D. 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169−75

doi: 10.1093/genetics/161.3.1169
[259]

Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757−61

doi: 10.1534/genetics.110.120717
[260]

Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. 2013. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339:819−23

doi: 10.1126/science.1231143
[261]

Yin K, Gao C, Qiu J. 2017. Progress and prospects in plant genome editing. Nature Plants 3:17107

doi: 10.1038/nplants.2017.107
[262]

Fichtner F, Urrea Castellanos R, Ülker B. 2014. Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239:921−39

doi: 10.1007/s00425-014-2029-y
[263]

Chen K, Gao C. 2014. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Reports 33:575−83

doi: 10.1007/s00299-013-1539-6
[264]

Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, et al. 2017. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Reports 7:10028

doi: 10.1038/s41598-017-10715-1
[265]

Yan R, Wang Z, Ren Y, Li H, Liu N, et al. 2019. Establishment of Efficient Genetic Transformation Systems and Application of CRISPR/Cas9 Genome Editing Technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. International Journal of Molecular Sciences 20:2920

doi: 10.3390/ijms20122920
[266]

Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM, et al. 2018. 10KP: A phylodiverse genome sequencing plan. Gigascience 7:giy013

doi: 10.1093/gigascience/giy013
[267]

Chen F, Song Y, Li X, Chen J, Mo L, et al. 2019. Genome sequences of horticultural plants: past, present, and future. Horticulture Research 6:112

doi: 10.1038/s41438-019-0195-6
[268]

Li Z, Barker MS. 2020. Inferring putative ancient whole-genome duplications in the 1000 Plants (1KP) initiative: access to gene family phylogenies and age distributions. Gigascience 9:giaa004

doi: 10.1093/gigascience/giaa004
[269]

Zheng T, Li P, Li L, Zhang Q. 2021. Research advances in and prospects of ornamental plant genomics. Horticulture Research 8:65

doi: 10.1038/s41438-021-00499-x
[270]

Jung H, Winefield C, Bombarely A, Prentis P, Waterhouse P. 2019. Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes. Trends in Plant Science 24:700−24

doi: 10.1016/j.tplants.2019.05.003
[271]

Boutigny AL, Dohin N, Pornin D, Rolland M. 2020. Overview and detectability of the genetic modifications in ornamental plants. Horticulture Research 7:11

doi: 10.1038/s41438-019-0232-5
[272]

Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, et al. 2020. Genetically modified crops: current status and future prospects. Planta 251:91

doi: 10.1007/s00425-020-03372-8
[273]

Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, et al. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nature Biotechnology 37:1155

doi: 10.1038/s41587-019-0217-9
[274]

Cheng HY, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170

doi: 10.1038/s41592-020-01056-5
[275]

Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, et al. 2020. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Research 30:1291−305

doi: 10.1101/gr.263566.120
[276]

Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications 11:2494

doi: 10.1038/s41467-020-16338-x
[277]

Shimomura K, Fukino N, Sugiyama M, Kawazu Y, Sakata Y, et al. 2017. Quantitative trait locus analysis of cucumber fruit morphological traits based on image analysis. Euphytica 213:138

doi: 10.1007/s10681-017-1926-0
[278]

Ye M, Zhu X, Gao P, Jiang L, Wu R. 2020. Identification of quantitative trait loci for altitude adaptation of tree leaf shape with Populus szechuanica in the Qinghai-Tibetan Plateau. Frontiers in Plant Science 11:632

doi: 10.3389/fpls.2020.00632
[279]

Cao Y, Zhu X, Wu R, Sun L. 2019. A Geometric Morphometrics-Based Mapping Model of Leaf Shape Evolution, In: Evolution, Origin of Life, Concepts and Methods, eds. Pontarotti P. Switzerland: Springer, Cham. pp. 161−77 https://doi.org/10.1007/978-3-030-30363-1_8

[280]

Sun L, Wang J, Zhu X, Jiang L, Gosik K, et al. 2018. HpQTL: a geometric morphometric platform to compute the genetic architecture of heterophylly. Briefings in Bioinformatics 19:603−12

doi: 10.1093/bib/bbx011
[281]

Cameron DE, Bashor CJ, Collins JJ. 2014. A brief history of synthetic biology. Nature Reviews Microbiology 12:381−90

doi: 10.1038/nrmicro3239
[282]

Singh A, Walker KT, Ledesma-Amaro R, Ellis T. 2020. Engineering bacterial cellulose by synthetic biology. International Journal of Molecular Sciences 21:9185

doi: 10.3390/ijms21239185
[283]

Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, et al. 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52−56

doi: 10.1126/science.1190719
[284]

Long C, Ni Y, Zhang X, Xin T, Long B. 2015. Biodiversity of Chinese Ornamentals. Acta Horticulturae 1087:209−20

doi: 10.17660/actahortic.2015.1087.25
[285]

Zhang L. 2019. Advance of horticultural plant genomes. Horticultural Plant Journal 5:229−30

doi: 10.1016/j.hpj.2019.12.002