García-Segovia P, García-Alcaraz V, Balasch-Parisi S, Martínez-Monzó J. 2020. 3D printing of gels based on xanthan/konjac gums. Innovative Food Science & Emerging Technologies 64:102343

doi: 10.1016/j.ifset.2020.102343

Yang F, Zhang M, Bhandari B. 2017. Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition 57:3145−53

doi: 10.1080/10408398.2015.1094732

Theagarajan R, Moses JA, Anandharamakrishnan C. 2020. 3D extrusion printability of rice starch and optimization of process variables. Food and Bioprocess Technology 13:1048−62

doi: 10.1007/s11947-020-02453-6

Lipton JI, Cutler M, Nigl F, Cohen D, Lipson H. 2015. Additive manufacturing for the food industry. Trends in Food Science & Technology 43:114−23

doi: 10.1016/j.jpgs.2015.02.004

Derossi A, Caporizzi R, Oral MO, Severini C. 2020. Analyzing the effects of 3D printing process per se on the microstructure and mechanical properties of cereal food products. Innovative Food Science & Emerging Technologies 66:102531

doi: 10.1016/j.ifset.2020.102531

Pallottino F, Hakola L, Costa C, Antonucci F, Figorilli S, et al. 2016. Printing on food or food printing: a review. Food and Bioprocess Technology 9:725−33

doi: 10.1007/s11947-016-1692-3

Piyush, Kumar R, Kumar R. 2020. 3D printing of food materials: A state of art review and future applications. Materials Today: Proceedings 33:1463−67

doi: 10.1016/j.matpr.2020.02.005

Godoi FC, Prakash S, Bhandari BR. 2016. 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering 179:44−54

doi: 10.1016/j.jfoodeng.2016.01.025

Wilson SA, Cross LM, Peak CW, Gaharwar AK. 2017. Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting. ACS Applied Materials & Interfaces 9:43449−58

doi: 10.1021/acsami.7b13602

Pérez B, Nykvist H, Brøgger AF, Larsen MB, Falkeborg MF. 2019. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review. Food Chemistry 287:249−57

doi: 10.1016/j.foodchem.2019.02.090

Pulatsu E, Su JW, Lin J, Lin M. 2020. Factors affecting 3D printing and post-processing capacity of cookie dough. Innovative Food Science & Emerging Technologies 61:102316

doi: 10.1016/j.ifset.2020.102316

Xing X, Chitrakar B, Hati S, Xie S, Li H, et al. 2022. Development of black fungus-based 3D printed foods as dysphagia diet: Effect of gums incorporation. Food Hydrocolloids 123:107173

doi: 10.1016/j.foodhyd.2021.107173

Liu Z, Bhandari B, Prakash S, Mantihal S, Zhang M. 2019. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids 87:413−24

doi: 10.1016/j.foodhyd.2018.08.026

Dick A, Dong X, Bhandari B, Prakash S. 2021. The role of hydrocolloids on the 3D printability of meat products. Food Hydrocolloids 119:106879

doi: 10.1016/j.foodhyd.2021.106879

Diañez I, Gallegos C, Brito-de la Fuente E, Martínez I, Valencia C, et al. 2019. 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocolloids 87:321−30

doi: 10.1016/j.foodhyd.2018.08.010

Sun R, Song G, Zhang H, Zhang H, Chi Y, et al. 2021. Effect of basil essential oil and beeswax incorporation on the physical, structural, and antibacterial properties of chitosan emulsion based coating for eggs preservation. LWT 150:112020

doi: 10.1016/j.lwt.2021.112020

Keerthana K, Anukiruthika T, Moses JA, Anandharamakrishnan C. 2020. Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. Journal of Food Engineering 287:110116

doi: 10.1016/j.jfoodeng.2020.110116

Xiao K, Liu Q, Wang L, Zhang B, Zhang W, et al. 2020. Prediction of soluble solid content of Agaricus bisporus during ultrasound-assisted osmotic dehydration based on hyperspectral imaging. LWT 122:109030

doi: 10.1016/j.lwt.2020.109030

Usman M, Murtaza G, Ditta A. 2021. Nutritional, medicinal, and cosmetic value of bioactive compounds in button mushroom (Agaricus bisporus): A Review. Applied Sciences 11:5943

doi: 10.3390/app11135943

Valverde ME, Hernández-Pérez T, Paredes-López O. 2015. Edible mushrooms: improving human health and promoting quality life. International Journal of Microbiology 2015:376387

doi: 10.1155/2015/376387

Athaillah ZA, Park JW. 2016. Characterization of surimi slurries and their films derived from myofibrillar proteins with different extraction methods. Food Bioscience 15:118−25

doi: 10.1016/j.fbio.2016.07.002

Yang G, Tao Y, Wang P, Xu X, Zhu X. 2022. Optimizing 3D printing of chicken meat by response surface methodology and genetic algorithm: Feasibility study of 3D printed chicken product. LWT 154:112693

doi: 10.1016/j.lwt.2021.112693

Liu Y, Liang X, Saeed A, Lan W, Qin W. 2019. Properties of 3D printed dough and optimization of printing parameters. Innovative Food Science & Emerging Technologies 54:9−18

doi: 10.1016/j.ifset.2019.03.008

Huang M, Wang H, Xu X, Lu X, Song X, et al. 2020. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-L-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocolloids 102:105576

doi: 10.1016/j.foodhyd.2019.105576

Zeng X, Chen H, Chen L, Zheng B. 2021. Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing. Food Chemistry 342:128362

doi: 10.1016/j.foodchem.2020.128362

Zheng L, Liu J, Liu R, Xing Y, Jiang H. 2021. 3D printing performance of gels from wheat starch, flour and whole meal. Food Chemistry 356:129546

doi: 10.1016/j.foodchem.2021.129546

Liu Y, Liu D, Wei G, Ma Y, Bhandari B, et al. 2018. 3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innovative Food Science & Emerging Technologies 49:116−26

doi: 10.1016/j.ifset.2018.07.018

Liu Z, Zhang M, Bhandari B, Wang Y. 2017. 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology 69:83−94

doi: 10.1016/j.jpgs.2017.08.018

Shi Y, Zhang M, Bhandari B. 2021. Effect of addition of beeswax based oleogel on 3D printing of potato starch-protein system. Food Structure 27:100176

doi: 10.1016/j.foostr.2021.100176

Gaillard Y, Mija A, Burr A, Darque-Ceretti E, Felder E, et al. 2011. Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochimica Acta 521:90−97

doi: 10.1016/j.tca.2011.04.010

Tian H, Wang K, Lan H, Wang Y, Hu Z, et al. 2021. Effect of hybrid gelator systems of beeswax-carrageenan-xanthan on rheological properties and printability of litchi inks for 3D food printing. Food Hydrocolloids 113:106482

doi: 10.1016/j.foodhyd.2020.106482

Higaki K, Koyano T, Hachiya I, Sato K. 2004. In situ optical observation of microstructure of β-fat gel made of binary mixtures of high-melting and low-melting fats. Food Research International 37:2−10

doi: 10.1016/j.foodres.2003.09.006

Liu H, Zheng J, Liu P, Zeng F. 2018. Pulverizing processes affect the chemical quality and thermal property of black, white, and green pepper (Piper nigrum L.). Journal of Food Science and Technology 55:2130−42

doi: 10.1007/s13197-018-3128-8