[1]

Xu L, Cai J, Gao T, Ma A. 2021. Shellfish consumption and health: A comprehensive review of human studies and recommendations for enhanced public policy. Critical Reviews in Food Science and Nutrition 62:4656−68

doi: 10.1080/10408398.2021.1878098
[2]

Liu Z, Cui L, Xv H, Dong J, Ding F. (Eds.) 2020. China Fisheries Yearbook (in Chinese). Beijing: China Agricultural Press. pp. 22−24

[3]

Skypala IJ, McKenzie R. 2019. Nutritional issues in food allergy. Clinical Reviews in Allergy & Immunology 57:166−78

doi: 10.1007/s12016-018-8688-x
[4]

Wai CYY, Leung NYH, Chu KH, Leung PSC, Leung ASY, et al. 2020. Overcoming shellfish allergy: How far have we come. International Journal of Molecular Sciences 21:2234

doi: 10.3390/ijms21062234
[5]

Mills ENC, Mackie AR. 2008. The impact of processing on allergenicity of food. Current Opinion in Allergy and Clinical Immunology 8:249−53

doi: 10.1097/ACI.0b013e3282ffb123
[6]

Yadzir ZHM, Misnan R, Bakhtiar F, Abdullah N, Murad, S. 2015. Tropomyosin, the major tropical oyster Crassostrea belcheri allergen and effect of cooking on its allergenicity. Allergy, Asthma, and Clinical Immunology 11:30−35

doi: 10.1186/s13223-015-0099-4
[7]

Quan W, Li Y, Jiao Y, Xue C, Liu G, et al. 2020. Simultaneous generation of acrylamide, β-carboline heterocyclic amines and advanced glycation ends products in an aqueous Maillard reaction model system. Food Chemistry 332:127387

doi: 10.1016/j.foodchem.2020.127387
[8]

Gupta RK, Gupta K, Sharma A, Das M, Ansari IA, et al. 2018. Maillard reaction in food allergy: Pros and cons. Critical Reviews in Food Science and Nutrition 58:208−26

doi: 10.1080/10408398.2016.1152949
[9]

Fu L; Wang C, Wang J, Ni S, Wang Y. 2019. Maillard reaction with ribose, galacto-oligosaccharide or chitosan-oligosaccharide reduced the allergenicity of shrimp tropomyosin by inducing conformational changes. Food Chemistry 274:789−95

doi: 10.1016/j.foodchem.2018.09.068
[10]

Hu M, Liu G, Yang Y, Pan T, Liu Y, et al. 2017. Cloning, expression, and the effects of processing on sarcoplasmic-calcium-binding protein: An important allergen in mud crab. Journal of Agricultural and Food Chemistry 65:6247−57

doi: 10.1021/acs.jafc.7b02381
[11]

Leung PSC, Chu KH. 2001. cDNA cloning and molecular identification of the major oyster allergen from the pacific oyster Crassostrea gigas. Clinical & Experimental Allergy 31:1287−94

doi: 10.1046/j.1365-2222.2001.01165.x
[12]

Han T, Liu M, Huan F, Li M, Xia F, et al. 2020. Identification and cross-reactivity analysis of sarcoplasmic-calcium-binding protein: A novel allergen in Crassostrea angulata. Journal of Agricultural and Food Chemistry 68:5221−31

doi: 10.1021/acs.jafc.0c01543
[13]

Han T, Huan F, Liu M, Li M, Yang Y, et al. 2021. IgE epitope analysis of sarcoplasmic-calcium-binding protein, a heat-resistant allergen in Crassostrea angulata. Food & Function 12:8570−82

doi: 10.1039/d1fo01058a
[14]

Chen Y, Li M, Yun X, Xia F, Hu M, et al. 2021. Site-directed mutations of calcium-binding sites contribute to reducing the immunoreactivity of the EF-hand sarcoplasmic calcium-binding protein in Scylla paramamosain. Journal of Agricultural and Food Chemistry 69:428−36

doi: 10.1021/acs.jafc.0c05733
[15]

Bai T, Han X, Li M, Yang Y, Liu M, et al. 2021. Effects of the Maillard reaction on the epitopes and immunoreactivity of tropomyosin, a major allergen in Chlamys nobilis. Food & Function 12:5096−108

doi: 10.1039/d1fo00270h
[16]

Liu M, Huan F, Li M, Han T, Xia F, et al. 2021. Mapping and IgE-binding capacity analysis of heat/digested stable epitopes of mud crab allergens. Food Chemistry 344:128735−43

doi: 10.1016/j.foodchem.2020.128735
[17]

Bøgh KL, Madsen CB. 2016. Food allergens: Is there a correlation between stability to digestion and allergenicity? Critical Reviews in Food Science and Nutrition 56:1545−67

doi: 10.1080/10408398.2013.779569
[18]

Sampson HA, O’Mahony L, Burks AW, Plaut M, Lack G, et al. 2018. Mechanisms of food allergy. Journal of Allergy and Clinical Immunology 141:11−19

doi: 10.1016/j.jaci.2017.11.005
[19]

Wai CYY, Leung NYH, Leung PSC, Chu KH. 2019. Immunotherapy of food allergy: A comprehensive review. Clinical Reviews in Allergy & Immunology 57:55−73

doi: 10.1007/s12016-017-8647-y
[20]

Satitsuksanoa P, Jansen K, Głobińska A, van de Veen W, Akdis M. 2018. Regulatory immune mechanisms in tolerance to food allergy. Frontiers in Immunology 9:2939−48

doi: 10.3389/fimmu.2018.02939
[21]

Cabanillas B, Novak N. 2019. Effects of daily food processing on allergenicity. Critical Reviews in Food Science and Nutrition 51:31−42

doi: 10.1080/10408398.2017.1356264
[22]

Xia F, Li M, Liu Q, Liu M, Yang Y, et al. 2019. Crystal structure analysis and conformational epitope mutation of triosephosphate isomerase, a mud crab allergen. Journal of Agricultural and Food Chemistry 67:12918−26

doi: 10.1021/acs.jafc.9b05279
[23]

Zhang Y, Bi Y, Wang Q, Cheng K, Chen F. 2019. Application of high pressure processing to improve digestibility, reduce allergenicity, and avoid protein oxidation in cod (Gadus morhua). Food Chemistry 298:125087−93

doi: 10.1016/j.foodchem.2019.125087
[24]

Bernhofer M, Dallago C, Karl T, Satagopam V, Heinzinger M, et al. 2021. PredictProtein-Predicting protein structure and function for 29 years. Nucleic Acids Research 49:W535−W540

doi: 10.1093/nar/gkab354
[25]

Murvai N, Kalmar L, Szabo B, Schad E, Micsonai A, et al. 2021. Cellular chaperone function of intrinsically disordered dehydrin Erd14. International Journal of Molecular Sciences 22:6190

doi: 10.3390/ijms22126190
[26]

Savojardo C, Manfredi M, Martelli PL, Casadio R. 2021. Solvent accessibility of residues undergoing pathogenic variations in humans: From protein structures to protein sequences. Frontiers in Molecular Biosciences 7:626363

doi: 10.3389/fmolb.2020.626363
[27]

Khan MU, Ahmed I, Lin H, Li Z, Costa J, et al. 2019. Potential efficacy of processing technologies for mitigating crustacean allergenicity. Critical Reviews in Food Science and Nutrition 59:2807−30

doi: 10.1080/10408398.2018.1471658
[28]

Maleki SJ, Chung SY, Champagne ET, Raufman JP. 2000. The effects of roasting on the allergenic properties of peanut proteins. Journal of Allergy and Clinical Immunology 106:763−68

doi: 10.1067/mai.2000.109620
[29]

Niu L, Jiang S, Pan L, Zhai Y. 2011. Characteristics and Functional properties of wheat germ protein glycated with saccharides through Maillard reaction. International Journal of Food Science and Technology 46:2197−203

doi: 10.1111/j.1365-2621.2011.02737.x
[30]

Bogahawaththa D, Chandrapala J, Vasiljevic T. 2017. Modulation of milk immunogenicity by thermal processing. International Dairy Journal 69:23−32

doi: 10.1016/j.idairyj.2017.01.010
[31]

Astwood JD, Leach JN, Fuchs RL. 1996. Stability of food allergens to digestion in vitro. Nature Biotechnology 14:1269−73

doi: 10.1038/nbt1096-1269
[32]

Sun W, Zhou F, Zhao M, Yang B, Cui C, et al. 2011. Physicochemical changes of myofibrillar proteins during processing of cantonese sausage in relation to their aggregation behaviour and in vitro digestibility. Food Chemistry 129:472−78

doi: 10.1016/j.foodchem.2011.04.101
[33]

Di Stasio L, Picariello G, Mongiello M, Nocerino R, Berni Canani R, et al. 2017. Peanut digestome: Identification of digestion resistant IgE binding peptides. Food and Chemical Toxicology 107:88−98

doi: 10.1016/j.fct.2017.06.029
[34]

Liu C, Sathe SK. 2018. Food allergen epitope mapping. Journal of Agricultural and Food Chemistry 66:7238−48

doi: 10.1021/acs.jafc.8b01967
[35]

Liu M, Liu G, Yang Y, Mei X, Yang H, et al. 2018. Thermal processing influences the digestibility and immunoreactivity of muscle proteins of Scylla paramamosain. LWT 98:559−67

doi: 10.1016/j.lwt.2018.09.027
[36]

Han X, Yang H, Rao S, Liu G, Hu M, et al. 2018. The Maillard reaction reduced the sensitization of tropomyosin and arginine kinase from Scylla paramamosain, simultaneously. Journal of Agricultural and Food Chemistry 66:2934−43

doi: 10.1021/acs.jafc.7b05195
[37]

Fu L, Wang J, Ni S, Wang C, Wang Y. 2018. Identification of allergenic epitopes and critical amino acids of major allergens in Chinese shrimp (Penaeus chinensis) by immunoinformatics coupled with competitive-binding strategy. Journal of Agricultural and Food Chemistry 66:2944−53

doi: 10.1021/acs.jafc.7b06042
[38]

Liu G, Mei X, Hu M, Yang Y, Liu M, et al. 2018. Analysis of the allergenic epitopes of tropomyosin from mud crab using phage display and site-directed mutagenesis. Journal of Agricultural and Food Chemistry 66:9127−37

doi: 10.1021/acs.jafc.8b03466