[1]

Jiang H, Ma B, Qian Q, Gao Z. 2018. The application of genome-wide association study (GWAS) in crop agronomic traits. Journal of Agricultural Biotechnology 7:1244−1257

[2]

Stanturf JA, Palik BJ, Dumroese RK. 2014. Contemporary forest restoration: A review emphasizing function. Forest Ecology and Management 331:292−323

doi: 10.1016/j.foreco.2014.07.029
[3]

Chen C, Park T, Wang X, Piao S, Xu B, et al. 2019. China and India lead in greening of the world through land-use management. Nature Sustainability 2:122−29

doi: 10.1038/s41893-019-0220-7
[4]

Zinkgraf M, Liu L, Groover A, Filkov V. 2017. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions. New Phytologist 214:1464−78

doi: 10.1111/nph.14492
[5]

Larsen CPS, Macdonald GM. 1995. Relations between tree-ring widths, climate, and annual area burned in the boreal forest of Alberta. Canadian Journal of Forest Research 25:1746−55

doi: 10.1139/x95-189
[6]

Nagamitsu T, Nagasaka K, Yoshimaru H, Tsumura Y. 2014. Provenance tests for survival and growth of 50-year-old Japanese larch (Larix kaempferi) trees related to climatic conditions in central Japan. Tree Genetics & Genomes 10:87−99

doi: 10.1007/s11295-013-0666-0
[7]

Sexton TR, Henry RJ, Harwood CE, Thomas DS, Mcmanus LJ, et al. 2012. Pectin methylesterase genes influence solid wood properties of Eucalyptus pilularis. Plant Physiology 158:531−41

doi: 10.1104/pp.111.181602
[8]

Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S. 2009. Agroforestry tree database: A tree reference and selection guide version 4.0. Anthocephalus cadamba. In ICRAF Science Domain 3 (tree domestication, diversity and delivery), ed. Orwa C. Nairobi: World Agroforestry Centre. pp. 1−5

[9]

Lal M, Dutt D, Tyagi CH, Upadhyay JS, Upadhyay S. 2010. Characterization of Anthocephalus cadamba and its delignification by kraft pulping. Technical Association of the Pulp and Paper Industry Journal 9:30−37

doi: 10.32964/tj9.3.30
[10]

Pang SL, Ho WS, Mat-Isa MN, Abdullah J. 2015. Gene discovery in the developing xylem tissue of a tropical timber tree species: Neolamarckia cadamba (Roxb.) Bosser (kelampayan). Tree Genetics & Genomes 11:47

doi: 10.1007/s11295-015-0873-y
[11]

Pandey A, Negi PS. 2016. Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: A review. Journal of Ethnopharmacology 181:118−35

doi: 10.1016/j.jep.2016.01.036
[12]

Pandey A, Chauhan AS, Haware DJ, Negi PS. 2018. Proximate and mineral composition of Kadamba (Neolamarckia cadamba) fruit and its use in the development of nutraceutical enriched beverage. Journal of Food Science and Technology 55:4330−36

doi: 10.1007/s13197-018-3382-9
[13]

Nandi T, Karmakar P. 2018. Apis mellifera pollen loads to understand the pollen foraging pattern used for apicultural practice in a potentially agricultural belt in Bengal, India. Revista De Biologia Tropical 66:1597−605

doi: 10.15517/rbt.v66i4.32697
[14]

He L, Zhou W, Wang Y, Wang C, Chen X, et al. 2018. Effect of applying lactic acid bacteria and cellulase on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadamba leaves silage. Journal of Animal Physiology and Animal Nutrition 102:1429−36

doi: 10.1111/jpn.12965
[15]

Chu S, Jacobs DF, Liao D, Liang L, Wu D, et al. 2018. Effects of landscape plant species and concentration of sewage sludge compost on plant growth, nutrient uptake, and heavy metal removal. Environmental Science and Pollution Research 25:35184−99

doi: 10.1007/s11356-018-3416-x
[16]

Kasim J, Misfar SN, Mohamed Tamat NS, Abd Latib N. 2016. Effect of tree portion and distance from pith on specific gravity, fiber properties and mechanical properties of Kelampayan (Neolamarckia cadamba) Wood. In Regional Conference on Science, Technology and Social Sciences (RCSTSS 2014), eds. Yacob N, Mohamed M, Megat Hanafiah M. Singapore: Springer, Singapore. pp. 367−75 https://doi.org/10.1007/978-981-10-0534-3_35

[17]

Pertiwi YAB, Aiso H, Ishiguri F, Wedatama S, Marsoem SN, et al. 2017. Effect of radial growth rate on wood properties of Neolamarckia Cadamba. Journal of Tropical Forest Science 29:30−36

[18]

Kadir R, Masseat K. 2018. Heartwood durability of Dyera costulata, Neolamarckia cadamba and Khaya ivorensis trees from fast-growth plantations against subterranean termite Coptotermes curvignathus. Holzforschung 72:143−49

doi: 10.1515/hf-2017-0067
[19]

Wei RP, Zhu W. 2019. Adaptability and growth of a fast-growing Neolamarckia cadamba (Roxb.) Bosser clone in the south subtropical region of China. Open Journal of Forestry 9:419−38

doi: 10.4236/ojf.2019.94024
[20]

Mojiol AR, Lintangah W, Maid M, Julius K 2014. Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie. In Neolamarckia cadamba (Roxb. ) Bosser 1984, ed. Roloff A.Vol. 2: 64. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. pp. 1−12

[21]

Que Q, Ouyang K, Li P, Li J, Zhang J, et al. 2015. Main traits observation of young growth family and superior family selection of Neolamarckia cadamba. Guangdong Agricultural Science 42:18−24

doi: 10.3969/j.issn.1004-874X.2015.15.004
[22]

Que Q, Li P, Ouyang K, Li J, Zhang J, et al. 2017. Genetic variation of young forest growth traits of Neolamarckia cadamba. Subtropical Plant Science 46:248−53

doi: 10.3969/j.issn.1009-7791.2017.03.010
[23]

Parthiban KT, Thirunirai-Selvan R, Palanikumaran B, Krishnakumar N. 2019. Variability and genetic diversity studies on Neolamarckia cadamba genetic resources. Journal of Tropical Forest Science 31:90−98

doi: 10.26525/jtfs2019.31.1.090098
[24]

Yin M, Guo J, Wang C, Zhao Z, Zeng J. 2019. Genetic parameter estimates and genotype × environment interactions of growth and quality traits for Betula alnoides Buch.-Ham. Ex d. Don in four provenance-family trials in southern China. Forests 10:1036

doi: 10.3390/f10111036
[25]

Wang JJ, Weng YH, Krasowski M, Yan GH, Fullarton M. 2018. Genetic parameters of growth and stem forking for black spruce progeny tested in New Brunswick, Canada. New Forests 49:265−77

doi: 10.1007/s11056-017-9618-0
[26]

Duan HJ, Cao S, Zheng HQ, Hu DH, Lin J, et al. 2016. Variation in the growth traits and wood properties of chinese fir from six provinces of southern China. Forests 7:192

doi: 10.3390/f7090192
[27]

Krisnawati H, Kallio MH, Kanninen M 2011. Anthocephalus cadamba Miq.: Ecology, silviculture and productivity. In Growth and yield, ed. Krisnawati H. Vol. 1: 10. Bogor Barat: Center for International Forestry Research. pp. 5−6 https://doi.org/10.17528/cifor/003396

[28]

Rahayu I, Darmawan W, Nugroho N, Nandika D, Marchal R. 2014. Demarcation point between juvenile and mature wood in sengon (Falcataria moluccana) and jason (Anthocephalus cadamba). Journal of Tropical Forest Science 26:331−39

[29]

Porth I, Klápště J, Skyba O, Lai BSK, Geraldes A, et al. 2013. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations. New Phytologist 197:777−90

doi: 10.1111/nph.12014
[30]

Hong Z, Fries A, Wu HX. 2015. Age trend of heritability, genetic correlation, and efficiency of early selection for wood quality traits in Scots pine. Canadian Journal of Forest Research 45:817−25

doi: 10.1139/cjfr-2014-0465
[31]

Ma H, Dong Y, Chen Z, Liao W, Lei B, et al. 2015. Variation in the growth traits and wood properties of hybrid white poplar clones. Forests 6:1107−20

doi: 10.3390/f6041107
[32]

Ma SX, Wang JH, Zhang SG, Sun XM, Liang BS, et al. 2008. Genetic variation of wood properties of Japanese larch clones. Forest Research 21:69−73

[33]

Chen Z, Gil MRG, Karlsson B, Lundqvist SO, Olsson L, et al. 2014. Inheritance of growth and solid wood quality traits in a large Norway spruce population tested at two locations in southern Sweden. Tree Genetics & Genomes 10:1291−303

doi: 10.1007/s11295-014-0761-x
[34]

Hayatgheibi H, Fries A, Kroon J, Wu HX. 2017. Genetic analysis of lodgepole pine (Pinus contorta) solid-wood quality traits. Canadian Journal of Forest Research 47:1303−13

doi: 10.1139/cjfr-2017-0152
[35]

Chen Z, Karlsson B, Mörling T, Olsson L, Mellerowicz EJ, et al. 2016. Genetic analysis of fiber dimensions and their correlation with stem diameter and solid-wood properties in Norway spruce. Tree Genetics & Genomes 12:123

doi: 10.1007/s11295-016-1065-0
[36]

Wu HX, Ivković M, Gapare WJ, Matheson AC, Baltunis BS. 2008. Breeding for wood quality and profit in Pinus radiata: A review of genetic parameter estimates and implications for breeding and deployment. New Zealand Journal of Forestry Science 38:56−87

[37]

Osorio LF, White TL, Huber DA. 2003. Age-age and trait-trait correlations for Eucalyptus grandis Hill ex Maiden and their implications for optimal selection age and design of clonal trials. Theoretical and Applied Genetics 106:735−43

doi: 10.1007/s00122-002-1124-9
[38]

Zhang P, Wu F, Kang X. 2012. Genotypic variation in wood properties and growth traits of triploid hybrid clones of Populus tomentosa at three clonal trials. Tree Genetics & Genomes 8:1041−50

doi: 10.1007/s11295-012-0484-9
[39]

Sudrajat DJ, Siregar IZ, Khumaida N, Siregar UJ, Mansur I. 2016. Variation among populations and correlation among seedling characters of white jabon (Neolamarckia cadamba (Roxb.) Bosser) under drought and water logging stress. Jurnal Penelitian Kehutanan Wallacea 5:13−24

doi: 10.18330/jwallacea.2016.vol5iss1pp13-24
[40]

Sudrajat DJ, Yulianti Y, Rustam E, Suwandhi I. 2019. Genetic diversity in the growth of white jabon (Neolamarckia cadamba) provenance-progeny test: Comparing study in the nursery and field. Biodiversitas Journal of Biological Diversity 20:1325−32

doi: 10.13057/biodiv/d200512
[41]

Wu H, Duan A, Zhang J. 2019. Long-term growth variation and selection of geographical provenances of Cunninghamia lanceolata (Lamb.) Hook. Forests 10:876

doi: 10.3390/f10100876
[42]

Ma T, Liu Z, Sun C, Li Y, Chen X, et al. 2015. Morphology and bionomics of Diaphania glauculalis Guenée. Forest Pest and Disease 34:5−8

[43]

Missanjo E, Matsumura J. 2016. Genetic improvement of wood properties in Pinus kesiya Royle ex Gordon for sawn timber production in Malawi. Forests 7:253

doi: 10.3390/f7110253
[44]

Zhang SY, Yu Q, Chauret G, Koubaa A. 2003. Selection for both growth and wood properties in hybrid poplar clones. Forest Science 49:901−8

[45]

Gallo R, Pantuza IB, Santos GAD, de Resende MDV, Xavier A, et al. 2018. Growth and wood quality traits in the genetic selection of potential Eucalyptus dunnii Maiden clones for pulp production. Industrial Crops and Products 123:434−41

doi: 10.1016/j.indcrop.2018.07.016
[46]

Wei X, Borralho N. 1997. Genetic control of wood basic density and bark thickness and their relationships with growth traits of Eucalyptus urophylla in south east China. Silvae Genetica 46:245−50

[47]

Chen Q, Xie H. 2003. Improvement of separation method of vessel and wood fiber. Bulletin of Biology 38:55

[48]

Segal L, Creely JJ, Martin AE Jr, Conrad CM. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal 29:786−94

doi: 10.1177/004051755902901003
[49]

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org

[50]

de Mendiburu F. 2020. Agricolae: Statistical procedures for agricultural research. https://CRAN.R-project.org/package=agricolae

[51]

Covarrubias-Pazaran G. 2016. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One 11:e156744

doi: 10.1371/journal.pone.0156744
[52]

Diao S, Hou Y, Xie Y, Sun X. 2016. Age trends of genetic parameters, early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families. BMC Genetics 17:104

doi: 10.1186/s12863-016-0400-7
[53]

Hai PH, Jansson G, Harwood C, Hannrup B, Thinh HH. 2008. Genetic variation in growth, stem straightness and branch thickness in clonal trials of Acacia auriculiformis at three contrasting sites in Vietnam. Forest Ecology and Management 255:156−67

doi: 10.1016/j.foreco.2007.09.017