[1]

Guan Z, Wang W, Yu X, Lin W, Miao Y. 2018. Comparative proteomic analysis of coregulation of CIPK14 and WHIRLY1/3 mediated pale yellowing of leaves in Arabidopsis. International Journal of Molecular Sciences 19:2231

doi: 10.3390/ijms19082231
[2]

Yamatani H, Kohzuma K, Nakano M, Takami T, Kato Y, et al. 2018. Impairment of Lhca4, a subunit of LHCI, causes high accumulation of chlorophyll and the stay-green phenotype in rice. Journal of Experimental Botany 69:1027−35

doi: 10.1093/jxb/erx468
[3]

Hsieh EJ, Waters BM. 2016. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis. Journal of Experimental Botany 67:5671−85

doi: 10.1093/jxb/erw328
[4]

Zhang K, Liu Z, Shan X, Li C, Tang X, et al. 2017. Physiological properties and chlorophyll biosynthesis in a Pak-choi (Brassica rapa L. ssp. chinensis) yellow leaf mutant, pylm. Acta Physiologiae Plantarum 39:1−10

doi: 10.1007/s11738-016-2321-5
[5]

Liu X, Lan J, Huang Y, Cao P, Zhou C, et al. 2018. WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress. Journal of Experimental Botany 69:3949−61

doi: 10.1093/jxb/ery214
[6]

Ma X, Sun X, Li C, Huan R, Sun C, et al. 2017. Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa). Plant Physiology and Biochemistry 111:1−9

doi: 10.1016/j.plaphy.2016.11.007
[7]

Nagata N, Tanaka R, Satoh S, Tanaka A. 2005. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. The Plant Cell 17:233−40

doi: 10.1105/tpc.104.027276
[8]

Wu Z, Zhang X, He B, Diao L, Sheng S, et al. 2007. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiology 145:29−40

doi: 10.1104/pp.107.100321
[9]

Zhang S, Wu X, Cui J, Zhang F, Wan X, et al. 2019. Physiological and transcriptomic analysis of yellow leaf coloration in Populus deltoides Marsh. PLoS One 14:e0216879

doi: 10.1371/journal.pone.0216879
[10]

Zhou Y, Gong Z, Yang Z, Yuan Y, Zhu J, et al. 2013. Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One 8:e75299

doi: 10.1371/journal.pone.0075299
[11]

Sakai A, Takano H, Kuroiwa T. 2004. Organelle nuclei in higher plants: structure, composition, function, and evolution. International Review of Cytology 238:59−118

doi: 10.1016/s0074-7696(04)38002-2
[12]

Keyhaninejad N, Richins RD, O'Connell MA. 2012. Carotenoid content in field-grown versus greenhouse-grown peppers: Different responses in leaf and fruit. HortScience 47:852−55

doi: 10.21273/HORTSCI.47.7.852
[13]

Li W, Yang S, Lu Z, He Z, Ye Y, et al. 2018. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Horticulture Research 5:12

doi: 10.1038/s41438-018-0015-4
[14]

Llorente B, Martinez-Garcia JF, Stange C, Rodriguez-Concepcion M. 2017. Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light. Current Opinion in Plant Biology 37:49−55

doi: 10.1016/j.pbi.2017.03.011
[15]

Quian-Ulloa R, Stange C. 2021. Carotenoid biosynthesis and plastid development in plants: the role of light. International Journal of Molecular Sciences 22:1184

doi: 10.3390/ijms22031184
[16]

Gruszecki WI, Luchowski R, Zubik M, Grudzinski W, Janik E, et al. 2010. Blue-light-controlled photoprotection in plants at the level of the photosynthetic antenna complex LHCII. Journal of Plant Physiology 167:69−73

doi: 10.1016/j.jplph.2009.07.012
[17]

Johkan M, Shoji K, Goto F, Hahida SN, Yoshihara T. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany 75:128−33

doi: 10.1016/j.envexpbot.2011.08.010
[18]

Johkan M, Shoji K, Goto F, Hashida SN, Yoshihara T. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809−14

doi: 10.21273/HORTSCI.45.12.1809
[19]

Mouget JL, Rosa P, Tremblin G. 2004. Acclimation of Haslea ostrearia to light of different spectral qualities–confirmation ofchromatic adaptation'in diatoms. Journal of Photochemistry and Photobiology B:Biology 75:1−11

doi: 10.1016/j.jphotobiol.2004.04.002
[20]

Joubert C, Young PR, Eyéghé Bickong HA, Vivier MA. 2016. Field-grown grapevine berries use carotenoids and the associated xanthophyll cycles to acclimate to UV exposure differentially in high and low light (shade) conditions. Frontiers in Plant Science 7:786

doi: 10.3389/fpls.2016.00786
[21]

Li J, Hikosaka S, Goto E. 2009. Effects of light quality and photosynthetic photon flux on growth and carotenoid pigments in spinach (Spinacia oleracea L.). Acta Horticulturae 907:105−10

doi: 10.17660/actahortic.2011.907.12
[22]

Lefsrud MG, Kopsell DA, Sams CE. 2008. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 43:2243−44

doi: 10.21273/HORTSCI.43.7.2243
[23]

Kopsell DA, Sams CE. 2013. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. Journal of the American Society for Horticultural Science 138:31−37

doi: 10.21273/JASHS.138.1.31
[24]

Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA. 2017. UVA, UVB light, and methyl jasmonate, alone or combined, redirect the biosynthesis of glucosinolates, phenolics, carotenoids, and chlorophylls in broccoli sprouts. International Journal of Molecular Sciences 18:2330

doi: 10.3390/ijms18112330
[25]

Matsufuji H, Ishikawa K, Nunomura O, Chino M, Takeda M. 2007. Anti-oxidant content of different coloured sweet peppers, white, green, yellow, orange and red (Capsicum annuum L.). International Journal of Food Science & Technology 42:1482−88

doi: 10.1111/j.1365-2621.2006.01368.x
[26]

Huh JH, Kang BC, Nahm SH, Kim S, Ha KS, et al. 2001. A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theoretical and Applied Genetics 102:524−30

doi: 10.1007/s001220051677
[27]

Qin C, Yu C, Shen Y, Fang X, Chen L, et al. 2014. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceedings of the National Academy of Sciences 111:5135−40

doi: 10.1073/pnas.1400975111
[28]

Marles MS, Gruber MY, Scoles GJ, Muir AD. 2003. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry 62:663−72

doi: 10.1016/S0031-9422(02)00488-0
[29]

Peng J, Feng Y, Wang X, Li J, Xu G, et al. 2021. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations. Scientific Reports 11:7485

doi: 10.1038/s41598-021-86858-z
[30]

Di Q, Li J, Du Y, Wei M, Shi Q, et al. 2021. Combination of red and blue lights improved the growth and development of eggplant (Solanum melongena L.) seedlings by regulating photosynthesis. Journal of Plant Growth Regulation 40:1477−92

doi: 10.1007/s00344-020-10211-3
[31]

Su N, Wu Q, Shen Z, Xia K, Cui J. 2014. Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. Plant Growth Regulation 73:227−35

doi: 10.1007/s10725-013-9883-7
[32]

Mohsenpour SF, Willoughby N. 2013. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource Technology 142:147−53

doi: 10.1016/j.biortech.2013.05.024
[33]

Yuan M, Zhang D, Zhang Z, Chen Y, Yuan S, et al. 2012. Assembly of NADPH: protochlorophyllide oxidoreductase complex is needed for effective greening of barley seedlings. Journal of Plant Physiology 169:1311−16

doi: 10.1016/j.jplph.2012.05.010
[34]

Liu M, Lu Y, Wang S, Wu F, Li J, et al. 2018. Characterization of the leaf color mutant hy and identification of the mutated gene in Chinese cabbage. Journal of the American Society for Horticultural Science 143:363−69

doi: 10.21273/JASHS04403-18
[35]

Shalygo N, Czarnecki O, Peter E, Grimm B. 2009. Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis. Plant molecular biology 71:425

doi: 10.1007/s11103-009-9532-8
[36]

Frede K, Schreiner M, Baldermann S. 2019. Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis. Journal of Photochemistry and Photobiology B: Biology 193:18−30

doi: 10.1016/j.jphotobiol.2019.02.001
[37]

Demotes-Mainard S, Péron T, Corot A, Bertheloot J, Le Gourrierec J, et al. 2016. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany 121:4−21

doi: 10.1016/j.envexpbot.2015.05.010
[38]

Li Q, Kubota C. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany 67:59−64

doi: 10.1016/j.envexpbot.2009.06.011
[39]

Ohashi Kaneko K, Takase M, Kon N, Fujiwara K, Kurata K. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology 45:189−98

doi: 10.2525/ecb.45.189
[40]

Xie B, Wei J, Zhang Y, Song S, Su W, et al. 2019. Supplemental blue and red light promote lycopene synthesis in tomato fruits. Journal of Integrative Agriculture 18:590−98

doi: 10.1016/S2095-3119(18)62062-3
[41]

Li Y, Chen Q, Xie X, Cai Y, Li J, et al. 2020. Integrated metabolomics and transcriptomics analyses reveal the molecular mechanisms underlying the accumulation of anthocyanins and other flavonoids in Cowpea Pod (Vigna unguiculata L.). Journal of Agricultural and Food Chemistry 68:9260−75

doi: 10.1021/acs.jafc.0c01851
[42]

Von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, et al. 1997. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. The Plant Journal 12:625−34

doi: 10.1046/j.1365-313X.1997.d01-16.x
[43]

Woitsch S, Römer S. 2003. Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. Plant Physiology 132:1508−17

doi: 10.1104/pp.102.019364
[44]

Zhang L, Ma G, Kato M, Yamawaki K, Takagi T, et al. 2012. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro. Journal of Experimental Botany 63:871−86

doi: 10.1093/jxb/err318
[45]

Tuan PA, Thwe AA, Kim YB, Kim JK, Kim SJ, et al. 2013. Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.). Journal of Agricultural & Food Chemistry 61:12356−61

doi: 10.1021/jf4039937
[46]

Li Y, Liu C, Shi Q, Yang F, Wei M. 2021. Mixed red and blue light promotes ripening and improves quality of tomato fruit by influencing melatonin content. Environmental and Experimental Botany 185:104407

doi: 10.1016/j.envexpbot.2021.104407
[47]

Meier S, Tzfadia O, Vallabhaneni R, Gehring C, Wurtzel ET. 2011. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Systems Biology 5:77

doi: 10.1186/1752-0509-5-77
[48]

Welsch R, Arango J, Bär C, Salazar B, Al Babili S, et al. 2010. Provitamin a accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. The Plant Cell 22:3348−56

doi: 10.1105/tpc.110.077560
[49]

Maass D, Arango J, Wüst F, Beyer P, Welsch R, et al. 2009. Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels. PLoS One 4:e6373

doi: 10.1371/journal.pone.0006373
[50]

Cazzonelli CI, Pogson BJ. 2010. Source to sink: regulation of carotenoid biosynthesis in plants. Trends in Plant Science 15:266−74

doi: 10.1016/j.tplants.2010.02.003
[51]

Welsch R, Beyer P, Hugueney P, Kleinig H, von Lintig J. 2000. Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 211:846−54

doi: 10.1007/s004250000352
[52]

Ruiz Sola MÁ, Coman D, Beck G, Barja MV, Colinas M, et al. 2016. Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. New Phytologist 209:252−64

doi: 10.1111/nph.13580
[53]

Nisar N, Li L, Lu S, Khin NC, Pogson BJ. 2015. Carotenoid metabolism in plants. Molecular Plant 8:68−82

doi: 10.1016/j.molp.2014.12.007
[54]

Giorio G, Yildirim A, Stigliani AL, D'Ambrosio C. 2013. Elevation of lutein content in tomato: A biochemical tug-of-war between lycopene cyclases. Metabolic Engineering 20:167−76

doi: 10.1016/j.ymben.2013.10.007
[55]

Liang M, Zhu J, Jiang J. 2018. Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Critical Reviews in Food Science and Nutrition 58:2314−33

doi: 10.1080/10408398.2017.1322552
[56]

Colasuonno P, Lozito ML, Marcotuli I, Nigro D, Giancaspro A, et al. 2017. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics 18:122

doi: 10.1186/s12864-016-3395-6
[57]

Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, et al. 2009. Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Molecular Plant 2:1154−80

doi: 10.1093/mp/ssp088
[58]

Bruley C, Dupierris V, Salvi D, Rolland N, Ferro M. 2012. AT_CHLORO: A Chloroplast Protein Database Dedicated to Sub-Plastidial Localization. Frontiers in Plant Science 3:205

doi: 10.3389/fpls.2012.00205
[59]

Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817:182−93

doi: 10.1016/j.bbabio.2011.04.012
[60]

Pinnola A, Dall’Osto L, Gerotto C, Morosinotto T, Bassi R, et al. 2013. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. The Plant Cell 25:3519−34

doi: 10.1105/tpc.113.114538
[61]

Chen C, Li H, Zhang D, Li P, Ma F. 2013. The role of anthocyanin in photoprotection and its relationship with the xanthophyll cycle and the antioxidant system in apple peel depends on the light conditions. Physiologia Plantarum 149:354−66

doi: 10.1111/ppl.12043
[62]

Wolters AMA, Uitdewilligen JGAML, Kloosterman BA, Hutten RCB, Visser RGF, et al. 2010. Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Molecular Biology 73:659−71

doi: 10.1007/s11103-010-9647-y
[63]

Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany 51:659−68

doi: 10.1093/jexbot/51.345.659
[64]

Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1

doi: 10.1104/pp.24.1.1
[65]

Rio DC, Ares M, Hannon GJ, Nilsen TW. 2010. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols 2010:pdb.prot5439

doi: 10.1101/pdb.prot5439
[66]

Davidson NM, Oshlack A. 2014. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biology 15:410

doi: 10.1186/s13059-014-0410-6
[67]

Hao Z, Liu S, Hu L, Shi J, Chen J. 2020. Transcriptome analysis and metabolic profiling reveal the key role of carotenoids in the petal coloration of Liriodendron tulipifera. Horticulture Research 7:70

doi: 10.1038/s41438-020-0287-3
[68]

Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, et al. 2019. The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends in Biotechnology 37:761−74

doi: 10.1016/j.tibtech.2018.12.002
[69]

Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, et al. 2009. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biology 10:R64

doi: 10.1186/gb-2009-10-6-r64