[1]

Li C, Zhao D, Zhang J, Yue J. 2021. Development status, problems and countermeasures of tropical fruit industry in Yunnan Province. Anhui Agricultural Science 49:232−34

[2]

Liu H, Shenghong H. 2009. Comparative analysis of the production advantages of tropical fruits in Hainan. China Agricultural Science Bulletin 25:254−57

[3]

Hainan Provincial Bureau of Statistics. 2021. Statistical Yearbook of Hainan Province 2020, http://stats.hainan.gov.cn/tjj/tjsu/

[4]

Hainan Provincial Department of Agriculture. Notice on Promoting the Construction of 100 Leisure Agriculture Demonstration Sightseeing Parks in the "Greening Treasure Island" campaign.

[5]

Hainan Provincial Forestry Bureau. 2020. Letter on Organizing the Application and Selection of Provincial Modern Agricultural Industrial Parks in 2020. http://agri.hainan.gov.cn/hnsnyt/xxgk/tzgg/xztz/202003/t20200320_2764356.html. Accessed on Aug. 30, 2021

[6]

Wu L. 2019. Research on the Reconstruction Path of Tropical Fruit Industry in Western Hainan Province - Based on the Investigation and Investigation of X Town in Danzhou City from the Perspective of Government Action. Think Tank Times 14:56−57

[7]

Wang P, Lu K. 2019. Exploration of supply chain coordination mechanism in the farmer's perspective: A case study of tropical fruit industry in Hainan. Tropical Agricultural Science 39:96−100

[8]

Zhang Y, Han X, Li S, Xu Z. 2016. The influence of the establishment of China-ASEAN Free Trade Area on Chinese tropical fruit industry. China Tropical Agriculture 5:5−8

doi: 10.3969/j.issn.1673-0658.2016.05.001
[9]

Zhao G, Li W. 2020. Development trend and countermeasures of Yunnan tropical fruit industry. China Tropical Agriculture 5:33−36

doi: 10.3969/j.issn.1673-0658.2020.05.009
[10]

Kong T, Deng D. 2021. The development situation of ASEAN fruit industry and its impact on Guangxi's fruit industry economy. China Fruit Tree 2:94−98

doi: 10.16626/j.cnki.issn1000-8047.2021.02.023
[11]

Hainan Provincial People's Government. Hainan Province's "14th Five-Year Plan" to promote agricultural and rural modernization planning. https://www.hainan.gov.cn/hainan/5309/202107/cdfb223bebbe4dbebab58183dac84bb7.shtml. Accessed on Aug. 30, 2021

[12]

Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I. 2017. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Scientific Reports 7:4686

doi: 10.1038/s41598-017-04959-0
[13]

Cerezo M, Tillard P, Filleur S, Muños S, Daniel-Vedele F, et al. 2001. Major alterations of the regulation of root NO3 - uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiology 127:262−71

doi: 10.1104/pp.127.1.262
[14]

Hu W, Ji C, Shi H, Liang Z, Ding Z, et al. 2021. Allele-defined genome reveals biallelic differentiation during cassava evolution. Molecular Plant 14:851−54

doi: 10.1016/j.molp.2021.04.009
[15]

Mignon E, Werbrouck S. 2018. Somatic embryogenesis as key technology for shaping the rubber tree of the future. Frontiers in Plant Science 9:1804

doi: 10.3389/fpls.2018.01804
[16]

Tang C, Xiao X, Li H, Fan Y, Yang J, et al. 2013. Comparative analysis of latex transcriptome reveals putative molecular mechanisms underlying super productivity of Hevea brasiliensis. PLoS ONE 8:e75307

doi: 10.1371/journal.pone.0075307
[17]

Tang C, Huang D, Yang J, Liu S, Sakr S, et al. 2010. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant, Cell & Environment 33:1708−20

doi: 10.1111/j.1365-3040.2010.02175.x
[18]

Tang X, Wang Q, Yuan H, Huang X. 2018. Chilling- induced DNA demethylation is associated with cold tolerance of Hevea brasiliensis. BMC Plant Biology 18:70

doi: 10.1186/s12870-018-1276-7
[19]

Tang W, Ye J, Yao X, Zhao P, Xuan W, et al. 2019. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications 10:5279

doi: 10.1038/s41467-019-13187-1
[20]

Xia Z, Liu K, Zhang S, Yu W, Zou M, et al. 2018. An ultra-high-density map allowed for mapping QTL and candidate genes controlling dry latex yield in rubber tree. Industrial Crops and Products 120:351−356

doi: 10.1016/j.indcrop.2018.04.057
[21]

Yang SY, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, et al. 2012. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. The Plant Cell 24:4236−51

doi: 10.1105/tpc.112.104901
[22]

Yeang HY, Jacob JL, Prevot JC. 1986. Invertase activity in Hevea latex serum: interaction between pH and serum concentration. Journal of Natural Rubber Research 1:16−24

[23]

Yuan H, Sheng Y, Chen W, Lu Y, Tang X, et al. 2017. Overexpression of Havea brasilliensis HbICE1 enhances cold tolerance in Arabidopsis. Frontiers in Plant Science 8:1462

doi: 10.3389/fpls.2017.01462
[24]

Zhang L, Xu M, Liu Y, Zhang F, Hodge A, et al. 2016. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytologist 210:1022−32

doi: 10.1111/nph.13838
[25]

Zhang Y, Xin L, Pirrello J, Fang Y, Yang J, et al. 2021. Ethylene response factors regulate expression of HbSUT3, the sucrose influx carrier in laticifers of Hevea brasiliensis. Tree Physiology 41:1278−88

doi: 10.1093/treephys/tpaa179
[26]

An Z, Zhao Y, Zhang X, Huang X, Hu Y, et al. 2019. A high-density genetic map and QTL mapping on growth and latex yield-related traits in Hevea brasiliensis Müll. Industrial Crops & Products 132:440−48

[27]

Dhanya G, Vivek P, Ashish G R. 2001. Phytochemical analysis of coconut shell (Cocos nucifera Linn.) using gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacy Research 7:384−86

[28]

Hu B, Wang W, Ou S, Tang J, Li H, et al. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47:834−38

doi: 10.1038/ng.3337
[29]

Johnson OA. 1990. Physico-chemical changes in African mango (Irvingia gabonensis) during normal storage ripening. Food Chemistry 36(3):205−212

doi: 10.1016/0308-8146(90)90055-9
[30]

Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercy S, et al. 2012. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. The Plant Cell 24:245−258

doi: 10.1105/tpc.111.092221
[31]

Leclercq J, Lardet L, Martin F, Chapuset T, Oliver G, et al. 2010. The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Müll. Arg). Plant Cell Report 29:513−22

doi: 10.1007/s00299-010-0840-x
[32]

Lezhneva L, Kiba T, Feria-Bourrellier AB, Lafouge F, Boutet-Mercey S, et al. 2014. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. The Plant Journal 80:230−41

doi: 10.1111/tpj.12626
[33]

Lin FM, Wilkens WF. 1970. Volatile flavor components of coconut meat. Journal of Food Science 35:538−39

doi: 10.1111/j.1365-2621.1970.tb04802.x
[34]

Zaman QU, Li C, Cheng H, Hu Q. 2019. Genome editing opens a new era of genetic improvement in polyploid crops. Crop Journal 7:141−50

doi: 10.1016/j.cj.2018.07.004
[35]

Zaman QU, Wen C, Yuqin S, Mengyu H, Desheng M, et al. 2021. Characterization of SHATTERPROOF Homoeologs and CRISPR-Cas9-Mediated Genome Editing Enhances Pod-Shattering Resistance in Brassica napus L. The CRISPR Journal 4:360−70

doi: 10.1089/crispr.2020.0129
[36]

Li J, Zhu H, Yuan X, Yue X. 2020. Study on Nutritional Composition and Healthy Function of Pitaya Fruit. Modern Food 10:26−28

[37]

Li Y, Wang L. 2020. Genetic resources, breeding programs in China and gene mining of peach: a review. Horticultural Plant Journal 6:205−15

doi: 10.1016/j.hpj.2020.06.001
[38]

Liu S, Lan J, Zhou B, Qin Y, Zhou Y, et al. 2015. HbNIN2, a cytosolic alkaline/ neutral- invertase, is responsible for sucrose catabolism in rubber-producing laticifers of Hevea brasiliensis (para rubber tree). New Phytologist 206:709−25

doi: 10.1111/nph.13257
[39]

Marisol C, Kruger NJ, Whatley FR. 1992. Sucrose metabolism in mango fruit during ripening. Plant Science 84:45−51

doi: 10.1016/0168-9452(92)90206-2
[40]

Meethaworn K, Luckanatinwong V, Zhang B, Chen K, Siriphanich J. 2019. Off-flavor caused by cold storage is related to induced activity of LOX and HPL in young coconut fruit. LWT 114:108329

doi: 10.1016/j.lwt.2019.108329
[41]

Lin T, Xu X, Ruan J, Liu S, Wu S, et al. 2017. Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis. National Science Review 5:78−87

doi: 10.1093/nsr/nwx101
[42]

Raza Ali, A Razzaq, Mehmood SS, Hussain MA, Wei S, et al. 2021. Omics: the way forward to enhance abiotic stress tolerance in Brassica napus L. GM Crops & Food 12:251−81

doi: 10.1080/21645698.2020.1859898
[43]

Julio CT, Zheng Y, Sun H, Jiao C, Ruiz-May E, et al. 2017. Transcriptome analysis of mango (Mangifera indica L.) fruit epidermal peel to identify putative cuticle-associated genes. Scientific Reports 20:46163

doi: 10.1038/srep46163
[44]

Consortium MG, Bally ISE, Bombarely A, Chambers AH, Cohen Y, et al. 2021. The 'Tommy Atkins' mango genome reveals candidate genes for fruit quality. BMC Plant Biology 21:108

doi: 10.1186/s12870-021-02858-1
[45]

Ma X, Luo X, Wei Y, Bai T, Shi J, et al. 2021. Chromosome-scale genome and comparative transcriptomic analysis reveal transcriptional regulators of β-carotene biosynthesis in mango. Frontiers in Plant Science 12:749108

doi: 10.3389/fpls.2021.749108
[46]

Chen C, Li F, Xie F, Chen J, Hua Q, et al. 2022. Pitaya Genome and Multiomics Database (PGMD): A comprehensive and integrative resource of Selenicereus undatus. Genes 13:745

doi: 10.3390/genes13050745
[47]

Zhou Z, Gao H, Ming J, Ding Z, Lin X, et al. 2020. Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying Peel and pulp color formation. BMC Genomics 21:734

doi: 10.1186/s12864-020-07133-5
[48]

Chen J, Xie F, Cui Y, Chen C, Lu W, et al. 2021. A chromosome scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis. Horticulture Research 8:164

doi: 10.1038/s41438-021-00612-0
[49]

Li X, Zhang Y, Zhao S, Li B, Cai L, et al. 2021. Omics analyses indicate the routes of lignin related metabolites regulated by trypsin during storage of pitaya (Hylocereus undatus). Genomics 113(6):3681−95

doi: 10.1016/j.ygeno.2021.08.005
[50]

Teh B, Lim K, Yong CH, Ng CCY, Rao,SR, et al. 2017. The draft genome of tropical fruit durian (Durio zibethinus). Nature Genetics 49:1633−1641

doi: 10.1038/ng.3972
[51]

Suntichaikamolkul N, Sangpong L, Schaller H, Sirikantaramas S. 2021. Genome wide identification and expression profiling of durian CYPome related to fruit ripening. PLoS ONE 16:e0260665

doi: 10.1371/journal.pone.0260665
[52]

Khaksar G, Sangchay W, Pinsorn P, Sangpong L, Sirikantaramas S. 2019. Genome-wide analysis of the Dof gene family in durian reveals fruit ripening associated and cultivar-dependent Dof transcription factors. Scientific Reports 9:12109

doi: 10.1038/s41598-019-48601-7
[53]

Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, et al. 2018. Genomics of the origin and evolution of Citrus. Nature 554:311−16

doi: 10.1038/nature25447
[54]

Dutt M, Mahmoud LM, Chamusco K, Stanton D, Chase CD, et al. 2021. Utilization of somatic fusion techniques for the development of HLB tolerant breeding resources employing the Australian finger lime (Citrus australasica). PLoS ONE 16:e0255842

doi: 10.1371/journal.pone.0255842
[55]

Rendón-Anaya M, Ibarra-Laclette E, Méndez-Bravo A, Lan T, Zheng C, et al. 2019. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. PNAS 116:17081−89

doi: 10.1073/pnas.1822129116
[56]

Schreiber J, Durham T, Bilmes J, Noble WS. 2020. Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome. Genome Biology 21:81

doi: 10.1186/s13059-020-01977-6
[57]

Xoca-Orozco LÁ, Cuellar-Torres EA, González-Morales S, Gutiérrez-Martínez P, López-García, U, et al. 2017. Transcriptomic analysis of avocado hass (Persea americana Mill.) in the interaction system fruit-chitosan-colletotrichum. Frontiers in Plant Science 8:956

doi: 10.3389/fpls.2017.00956
[58]

Talavera A, Soorni A, Bombarely A, Matas AJ, Hormaza JI. 2019. Genome Wide SNP discovery and genomic characterization in avocado (Persea americana Mill.). Scientific Reports 9:20137

doi: 10.1038/s41598-019-56526-4
[59]

Mittal A, Yadav IS, Arora NK, Boora RS, Mittal M, et al. 2020. RNA-sequencing based gene expression landscape of guava cv. Allahabad Safeda and comparative analysis to colored cultivars. BMC Genomics 21:484

doi: 10.1186/s12864-020-06883-6
[60]

The International Peach Genome Initiative, Verde I, Abbott A, Scalabrin S, Jung S, et al. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics 45:487−494

doi: 10.1038/ng.2586
[61]

Wang Q, Cao K, Cheng L, Li Y, Guo J, et al. 2022. Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach. Horticulture Research 9:uhac026

doi: 10.1093/hr/uhac026
[62]

Meng X, Xu J, Zhang M, Du R, Zhao W, et al. 2021. Third-generation sequencing and metabolome analysis reveal candidate genes and metabolites with altered levels in albino jackfruit seedlings. BMC Genomics 22:543

doi: 10.1186/s12864-021-07873-y
[63]

Wang L, Liu Y, Chai M, Chen H, Aslam M, et al. 2021. Genome-wide identification, classification, and expression analysis of the HSF gene family in pineapple (Ananas comosus). PeerJ 9:e11329

doi: 10.7717/peerj.11329
[64]

Liao Z, Zhang X, Zhang S, Lin Z, Zhang X, et al. 2021. Structural variations in papaya genomes. BMC Genomics 22:335

doi: 10.1186/s12864-021-07665-4
[65]

Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, et al. 2009. A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371

doi: 10.1186/1471-2164-10-371