[1]

Borsch T, Löhne C, Wiersema J. 2008. Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology. TAXON 57:1052−4E

doi: 10.1002/tax.574004
[2]

Les DH, Garvin DK, Wimpee CF. 1991. Molecular evolutionary history of ancient aquatic angiosperms. PNAS 88:10119−23

doi: 10.1073/pnas.88.22.10119
[3]

Saarela JM, Rai HS, Doyle JA, Endress PK, Mathews S, et al. 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446:312−15

doi: 10.1038/nature05612
[4]

Yu C, Qiao G, Qiu W, Yu D, Zhou S, et al. 2018. Molecular breeding of water lily: engineering cold stress tolerance into tropical water lily. Horticulture Research 5:73

doi: 10.1038/s41438-018-0086-2
[5]

Schneider E, Tucker SC, Williamson PS. 2003. Floral Development in the Nymphaeales. International Journal of Plant Sciences 164:S279−S292

doi: 10.1086/376883
[6]

Friis EM, Pedersen KR, Crane PR. 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410:357−60

doi: 10.1038/35066557
[7]

Friedman WE. 2008. Hydatellaceae are water lilies with gymnospermous tendencies. Nature 453:94−97

doi: 10.1038/nature06733
[8]

Pellicer J, Kelly LJ, Magdalena C, Leitch IJ. 2013. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). Genome 56:437−49

doi: 10.1139/gen-2013-0039
[9]

Zhang L, Chen F, Zhang X, Li Z, Zhao Y, et al. 2020. The water lily genome and the early evolution of flowering plants. Nature 577:79−84

doi: 10.1038/s41586-019-1852-5
[10]

Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. PNAS 111:E4859−E4868

doi: 10.1073/pnas.1323926111
[11]

Schimpf M, Ulmer T, Hiller H, Barbuto AF. 2021. Toxicity from blue lotus (Nymphaea caerulea) after ingestion or inhalation: A case series. Military Medicine 11:usab328

doi: 10.1093/milmed/usab328
[12]

Devi SA, Thongam B, Handique PJ. 2015. Nymphaea rubra Roxb. ex Andrews cultivated as an ornamental, food and vegetable in the North Eastern region of India. Genetic Resources and Crop Evolution 62:315−20

doi: 10.1007/s10722-014-0177-3
[13]

Liu X, He Z, Yin Y, Xu X, Wu W, et al. 2018. Transcriptome sequencing and analysis during seed growth and development in Euryale ferox Salisb. BMC Genomics 19:343

doi: 10.1186/s12864-018-4707-9
[14]

Dash BK, Sen MK, Alam K, Hossain K, Islam R, et al. 2013. Antibacterial activity of Nymphaea nouchali (Burm. f) flower. Annals of Clinical Microbiology and Antimicrobials 12:27

doi: 10.1186/1476-0711-12-27
[15]

Hsu CL, Fang SC, Yen GC. 2013. Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Food & Function 4:1216−22

doi: 10.1039/c3fo60041f
[16]

Fajemiroye JO, Adam K, Jordan KZ, Alves CE, Aderoju AA. 2018. Evaluation of Anxiolytic and Antidepressant-like Activity of Aqueous Leaf Extract of Nymphaea Lotus Linn. in Mice. Iranian Journal of Pharmaceutical Research 17:613−26

[17]

Harris JC. 2007. The Water-lily pond-symphony in green. Archives of General Psychiatry 64:1347

doi: 10.1001/archpsyc.64.12.1347
[18]

Lavid N, Schwartz A, Yarden O, Tel-Or E. 2001. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212:323−31

doi: 10.1007/s004250000400
[19]

The Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105−21

doi: 10.1111/j.1095-8339.2009.00996.x
[20]

Zhang LS. 2019. Advance of Horticultural Plant Genomes. Hortic Plant J 5:229−30

doi: 10.1016/j.hpj.2019.12.002
[21]

Chen F, Liu X, Yu C, Chen Y, Tang H, et al. 2017. Water lilies as emerging models for Darwin's abominable mystery. Horticulture Research 4:17051

doi: 10.1038/hortres.2017.51
[22]

Dong S, Zhao C, Chen F, Liu Y, Zhang S, et al. 2018. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genomics 19:614

doi: 10.1186/s12864-018-4991-4
[23]

Lyu J. 2020. Encoding beauty. Nature Plants 6:50

doi: 10.1038/s41477-019-0587-5
[24]

Chen F, Zhang X, Liu X, Zhang L. 2017. Evolutionary Analysis of MIKCC-Type MADS-Box Genes in Gymnosperms and Angiosperms. Frontiers in Plant Science 8:895

doi: 10.3389/fpls.2017.00895
[25]

Chen F, Hu Y, Vannozzi A, Wu K, Cai H, et al. 2017. The WRKY Transcription Factor Family in Model Plants and Crops. Critical Reviews in Plant Sciences 36:311−35

doi: 10.1080/07352689.2018.1441103
[26]

Xu M, Chen F, Qi S, Zhang L, Wu S. 2018. Loss or duplication of key regulatory genes coincides with environmental adaptation of the stomatal complex in Nymphaea colorata and Kalanchoe laxiflora. Horticulture Research 5:42

doi: 10.1038/s41438-018-0048-8
[27]

Povilus RA, DaCosta JM, Grassa C, Satyaki PRV, Moeglein M, et al. 2020. Water lily (Nymphaea thermarum) genome reveals variable genomic signatures of ancient vascular cambium losses. PNAS 117:8649−56

doi: 10.1073/pnas.1922873117
[28]

Yang Y, Sun P, Lv L, Wang D, Ru D, et al. 2020. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nature Plants 6:215−22

doi: 10.1038/s41477-020-0594-6
[29]

Takuno S, Ran JH, Gaut BS. 2016. Evolutionary patterns of genic DNA methylation vary across land plants. Nature Plants 2:15222

doi: 10.1038/nplants.2015.222
[30]

Ke M, Gao Z, Chen J, Qiu Y, Zhang L, et al. 2018. Auxin controls circadian flower opening and closure in the waterlily. BMC Plant Biology 18:143

doi: 10.1186/s12870-018-1357-7
[31]

Li Z, Zhou W, Wang P, Chen Y, Huo S, et al. 2021. Transcriptome analysis reveals the senescence process controlling the flower opening and closure rhythm in the waterlilies (Nymphaea L.). Frontiers in Plant Science 12:701633

doi: 10.3389/fpls.2021.701633
[32]

Dias O, Tungare K, Palamthodi S, Bhori M. 2021. Nymphaea nouchali burm. f. flowers as a potential food additiveand revitalizer: A biochemico-toxicological insight. Journal of Food Processing and Preservation 45:e15045

doi: 10.1111/jfpp.15405
[33]

Acharya J, De B. 2016. Bioactivity-guided fractionation to identify β-glucuronidase inhibitors in Nymphaea pubescens flower extract. Cogent Food & Agriculture 2:1134379

doi: 10.1080/23311932.2015.1134379
[34]

Acharya J, Dutta M, Chaudhury K, De B. 2018. Metabolomics and chemometric study for identification of acetylcholinesterase inhibitor(s) from the flower extracts of Nymphaea pubescens. Journal of Food Biochemistry 42:e12575

doi: 10.1111/jfbc.12575
[35]

Maia ACD, de Lima CT, Navarro DMAF, Chartier M, Giulietti AM, et al. 2014. The floral scents of Nymphaea subg. Hydrocallis (Nymphaeaceae), the New World night-blooming water lilies, and their relation with putative pollinators. Phytochemistry 103:67−75

doi: 10.1016/j.phytochem.2014.04.007
[36]

Bakr RO, El-Naa MM, Zaghloul SS, Omar MM. 2017. Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: hepatoprotective, antioxidant and anti- inflammatory activity. BMC Complementary and Alternative Medicine 17:52

doi: 10.1186/s12906-017-1561-2
[37]

Zhao Y, Zhou W, Chen Y, Li Z, Song X, et al. 2021. Metabolite analysis in Nymphaea 'Blue Bird' petals reveal the roles of flavonoids in color formation, stress amelioration, and bee orientation. Plant Science 312:11025

doi: 10.1016/j.plantsci.2021.111025
[38]

Yuan R, Li S, Zheng X, Wu Q, Zhang H, et al. 2014. Determination of Volatiles in Water Lily Flowers Using Gas Chromatography-Mass Spectrometry. Analytical Letters 47:1541−51

doi: 10.1080/00032719.2013.878840
[39]

Smith LT, Magdalena C, Przelomska NAS, et al. 2022. Revised species delimitation in the giant water lily genus Victoria (Nymphaeaceae) confirms a new species and has implications for its conservation. Frontiers in Plant Science 13:883151

[40]

Jiang Y, Liu G, Zhang W, Zhang C, Chen X, et al. 2021. Biosynthesis and emission of methyl hexanoate, the major constituent of floral scent of a night-blooming water lily Victoria cruziana. Phytochemistry 191:112899

doi: 10.1016/j.phytochem.2021.112899
[41]

Zhu M, Zheng X, Shu Q, Li H, Zhong P, et al. 2012. Relationship between the Composition of Flavonoids and Flower Colors Variation in Tropical Water Lily (Nymphaea) Cultivars. PLoS One 7:e34335

doi: 10.1371/journal.pone.0034335
[42]

Wu Q, Wu J, Li S, Zhang H, Feng C, et al. 2016. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genomics 17:897

doi: 10.1186/s12864-016-3226-9
[43]

Wu Q, Li P, Zhang H, Feng C, Li S, et al. 2018. Relationship between the flavonoid composition and flower colour variation in Victoria. Plant Biology 20:674−81

doi: 10.1111/plb.12835
[44]

Wu P, Liu A, Li L. 2021. Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages. Molecular Genetics and Genomics 296:953−70

doi: 10.1007/s00438-021-01790-1
[45]

Su Q, Tian M, Li C, Li X, Lu J, et al. 2021. Transcriptome sequencing analysis of leaf vivipary in water lily. Chinese Journal of Tropical Crops 42:3443−50

doi: 10.3969/j.issn.1000-2561.2021.12.009
[46]

Grob V, Moline P, Pfeifer E, Novelo AR, Rutishauser R. 2006. Developmental morphology of branching flowers in Nymphaea prolifera. Journal of Plant Research 119:561−70

doi: 10.1007/s10265-006-0021-8
[47]

Manimaran P, Ghosh S, Priyanka R. 2017. Bulb size and growth regulators on the growth and performance of bulbous ornamental crops − A review. Chemical Science Review and Letters 6:1277−84

[48]

Zhang L, Wu S, Chang X, Wang X, Zhao Y, et al. 2020. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant, Cell & Environment 43:2847−56

doi: 10.1111/pce.13898
[49]

Caruana JC, Sittmann JW, Wang W, Liu Z. 2018. Suppressor of Runnerless encodes a DELLA protein that controls runner formation for asexual reproduction in strawberry. Molecular Plant 11:230−33

doi: 10.1016/j.molp.2017.11.001
[50]

Dąbrowska MA, Rola K, Volkova P, Suda J, Zalewska-Gałosz J. 2015. Genome size and phenotypic variation of Nymphaea (Nymphaeaceae) species from Eastern Europe and temperate Asia. Acta Societatis Botanicorum Poloniae 84:277−86

doi: 10.5586/asbp.2015.016
[51]

Pan Q, Fu Y, Gu J, Sheng Y, Li Q, et al. 2021. Analysis of phenotypic diversity of Nymphaea L. in Hainan, China. Chinese Journal of Tropical Crops 42:2777−88

doi: 10.3969/j.issn.1000-2561.2021.10.005
[52]

Vialette-Guiraud ACM, Alaux M, Legeai F, Finet C, Chambrier P, et al. 2011. Cabomba as a model for studies of early angiosperm evolution. Annals of Botany 108:589−98

doi: 10.1093/aob/mcr088
[53]

Tuckett RE, Merritt DJ, Rudall PJ, Hay F, Hopper SD, et al. 2010. A new type of specialized morphophysiological dormancy and seed storage behaviour in Hydatellaceae, an early-divergent angiosperm family. Annals of Botany 105:1053−61

doi: 10.1093/aob/mcq062