[1]

Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169:5429−33

doi: 10.1128/jb.169.12.5429-5433.1987
[2]

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709−12

doi: 10.1126/science.1138140
[3]

Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819−23

doi: 10.1126/science.1231143
[4]

Mali P, Yang L, Esvelt KM, Aach J, Guell M, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823−26

doi: 10.1126/science.1232033
[5]

Jacinto FV, Link W, Ferreira BI. 2020. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine. Journal of Cellular and Molecular Medicine 24:3766−78

doi: 10.1111/jcmm.14916
[6]

Jolany Vangah S, Katalani C, Booneh HA, Hajizade A, Sijercic A, et al. 2020. CRISPR-based diagnosis of infectious and noninfectious diseases. Biological Procedures Online 22:22

doi: 10.1186/s12575-020-00135-3
[7]

Joung J, Ladha A, Saito M, Segel M, Bruneau R, et al. 2020. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. MedRxiv Pre-print

doi: 10.1101/2020.05.04.20091231
[8]

Li JF, Norville JE, Aach J, McCormack M, Zhang D, et al. 2013. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31:688−91

doi: 10.1038/nbt.2654
[9]

Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31:691−93

doi: 10.1038/nbt.2655
[10]

Shan Q, Wang Y, Li J, Zhang Y, Chen K, et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31:686−88

doi: 10.1038/nbt.2650
[11]

Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 163:759−71

doi: 10.1016/j.cell.2015.09.038
[12]

Zong Y, Wang Y, Li C, Zhang R, Chen K, et al. 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology 35:438−40

doi: 10.1038/nbt.3811
[13]

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149−57

doi: 10.1038/s41586-019-1711-4
[14]

Wan D, Guo Y, Cheng Y, Hu Y, Xiao S, et al. 2020. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Horticulture Research 7:116

doi: 10.1038/s41438-020-0339-8
[15]

Xing S, Chen K, Zhu H, Zhang R, Zhang H, et al. 2020. Fine-tuning sugar content in strawberry. Genome Biology 21:230

doi: 10.1186/s13059-020-02146-5
[16]

Wada N, Osakabe K, Osakabe Y. 2022. Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems. Plant Physiology 188:1825−37

doi: 10.1093/plphys/kiac027
[17]

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816−21

doi: 10.1126/science.1225829
[18]

Wiedenheft B. 2014. US, Patent No. WO2014093479-A1

[19]

Wright AV, Nuñez JK, Doudna JA. 2016. Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering. Cell 164:29−44

doi: 10.1016/j.cell.2015.12.035
[20]

Chylinski K, Makarova KS, Charpentier E, Koonin EV. 2014. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Research 42:6091−105

doi: 10.1093/nar/gku241
[21]

Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, et al. 2017. Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology 15:169−82

doi: 10.1038/nrmicro.2016.184
[22]

Jiang F, Doudna JA. 2017. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics 46:505−29

doi: 10.1146/annurev-biophys-062215-010822
[23]

Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, et al. 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell 60:385−97

doi: 10.1016/j.molcel.2015.10.008
[24]

Xue C, Greene EC. 2021. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends in Genetics 37:639−56

doi: 10.1016/j.tig.2021.02.008
[25]

Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, et al. 2019. Functionally diverse type V CRISPR-Cas systems. Science 363:88−91

doi: 10.1126/science.aav7271
[26]

Li S, Zhang X, Wang W, Guo X, Wu Z, et al. 2018. Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Molecular Plant 11:995−98

doi: 10.1016/j.molp.2018.03.009
[27]

Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, et al. 2017. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nature Biotechnology 35:31−34

doi: 10.1038/nbt.3737
[28]

Teng F, Cui T, Feng G, Guo L, Xu K, et al. 2018. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discovery 4:63

doi: 10.1038/s41421-018-0069-3
[29]

Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, et al. 2019. Engineering of CRISPR-Cas12b for human genome editing. Nature Communications 10:212

doi: 10.1038/s41467-018-08224-4
[30]

Ming M, Ren Q, Pan C, He Y, Zhang Y, et al. 2020. CRISPR-Cas12b enables efficient plant genome engineering. Nature Plants 6:202−8

doi: 10.1038/s41477-020-0614-6
[31]

Selkova P, Vasileva A, Pobegalov G, Musharova O, Arseniev A, et al. 2020. Position of Deltaproteobacteria Cas12e nuclease cleavage sites depends on spacer length of guide RNA. RNA Biology 17:1472−79

doi: 10.1080/15476286.2020.1777378
[32]

Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, et al. 2017. New CRISPR-Cas systems from uncultivated microbes. Nature 542:237−41

doi: 10.1038/nature21059
[33]

Li Z, Zhang H, Xiao R, Han R, Chang L. 2021. Cryo-EM structure of the RNA-guided ribonuclease Cas12g. Nature Chemical Biology 17:387−93

doi: 10.1038/s41589-020-00721-2
[34]

Karvelis T, Bigelyte G, Young JK, Hou Z, Zedaveinyte R, et al. 2020. PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Research 48:5016−23

doi: 10.1093/nar/gkaa208
[35]

Wu Z, Zhang Y, Yu H, Pan D, Wang Y, et al. 2021. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nature Chemical Biology 17:1132−38

doi: 10.1038/s41589-021-00868-6
[36]

Huang CJ, Adler BA, Doudna JA. 2022. A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Molecular Cell 82:2148−2160.E4

doi: 10.1016/j.molcel.2022.04.020
[37]

East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JH, et al. 2016. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270−73

doi: 10.1038/nature19802
[38]

Pickar-Oliver A, Gersbach CA. 2019. The next generation of CRISPR-Cas technologies and applications. Nature Reviews Molecular Cell Biology 20:490−507

doi: 10.1038/s41580-019-0131-5
[39]

Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, et al. 2017. RNA editing with CRISPR-Cas13. Science 358:1019−27

doi: 10.1126/science.aaq0180
[40]

Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, et al. 2017. RNA targeting with CRISPR-Cas13. Nature 550:280−84

doi: 10.1038/nature24049
[41]

Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, et al. 2018. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biology 19:1

doi: 10.1186/s13059-017-1381-1
[42]

Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. 2016. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353:aad5147

doi: 10.1126/science.aad5147
[43]

Csörgő B, León LM, Chau-Ly IJ, Vasquez-Rifo A, Berry JD, et al. 2020. A compact Cascade-Cas3 system for targeted genome engineering. Nature methods 17:1183−90

doi: 10.1038/s41592-020-00980-w
[44]

Young JK, Gasior SL, Jones S, Wang L, Navarro P, et al. 2019. The repurposing of type I-E CRISPR-Cascade for gene activation in plants. Communications Biology 2:383

doi: 10.1038/s42003-019-0637-6
[45]

Osakabe K, Wada N, Miyaji T, Murakami E, Marui K, et al. 2020. Genome editing in plants using CRISPR type I-D nuclease. Communications Biology 3:648

doi: 10.1038/s42003-020-01366-6
[46]

Walker FC, Chou-Zheng L, Dunkle JA, Hatoum-Aslan A. 2017. Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases. Nucleic Acids Research 45:2112−23

doi: 10.1093/nar/gkw891
[47]

Bari SMN, Walker FC, Cater K, Aslan B, Hatoum-Aslan A. 2017. Strategies for editing virulent staphylococcal phages using CRISPR-Cas10. ACS Synthetic Biology 6:2316−25

doi: 10.1021/acssynbio.7b00240
[48]

Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, et al. 2018. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839−42

doi: 10.1126/science.aav4294
[49]

Khan MZ, Haider S, Mansoor S, Amin I. 2019. Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a. Trends in Biotechnology 37:800−4

doi: 10.1016/j.tibtech.2019.03.015
[50]

Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481−5

doi: 10.1038/nature14592
[51]

Kim HK, Lee S, Kim Y, Park J, Min S, et al. 2020. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nature Biomedical Engineering 4:111−24

doi: 10.1038/s41551-019-0505-1
[52]

Hu X, Meng X, Liu Q, Li J, Wang K. 2018. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnology Journal 16:292−97

doi: 10.1111/pbi.12771
[53]

Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, et al. 2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361:1259−62

doi: 10.1126/science.aas9129
[54]

Ren Q, Sretenovic S, Liu S, Tang X, Huang L, et al. 2021. PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants 7:25−33

doi: 10.1038/s41477-020-00827-4
[55]

Zhong Z, Zhang Y, You Q, Tang X, Ren Q, et al. 2018. Plant Genome Editing Using FnCpf1 and LbCpf1 Nucleases at Redefined and Altered PAM Sites. Molecular Plant 11:999−1002

doi: 10.1016/j.molp.2018.03.008
[56]

Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32:279−84

doi: 10.1038/nbt.2808
[57]

Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, et al. 2019. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nature Biotechnology 37:657−66

doi: 10.1038/s41587-019-0095-1
[58]

Ryan DE, Taussig D, Steinfeld I, Phadnis SM, Lunstad BD, et al. 2018. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Research 46:792−803

doi: 10.1093/nar/gkx1199
[59]

Bolukbasi MF, Gupta A, Oikemus S, Derr AG, Garber M, et al. 2015. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nature Methods 12:1150−56

doi: 10.1038/nmeth.3624
[60]

Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, et al. 2016. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490−95

doi: 10.1038/nature16526
[61]

Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, et al. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351:84−88

doi: 10.1126/science.aad5227
[62]

Heigwer F, Kerr G, Boutros M. 2014. E-CRISP: fast CRISPR target site identification. Nature Methods 11:122−3

doi: 10.1038/nmeth.2812
[63]

Lei Y, Lu L, Liu H, Li S, Xing F, et al. 2014. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant 7:1494−96

doi: 10.1093/mp/ssu044
[64]

Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, et al. 2016. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology 17:148

doi: 10.1186/s13059-016-1012-2
[65]

Aquino-Jarquin G. 2021. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing. Molecular Genetics and Metabolism 134:77−86

doi: 10.1016/j.ymgme.2021.08.002
[66]

Manghwar H, Li B, Ding X, Hussain A, Lindsey K, et al. 2020. CRISPR/Cas systems in genome editing: Methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Advanced Science 7:1902312

doi: 10.1002/advs.201902312
[67]

Tang T, Yu X, Yang H, Gao Q, Ji H, et al. 2018. Development and validation of an effective CRISPR/Cas9 vector for efficiently isolating positive transformants and transgene-free mutants in a wide range of plant species. Frontiers in Plant Science 9:1533

doi: 10.3389/fpls.2018.01533
[68]

Mao Y, Botella JR, Liu Y, Zhu J. 2019. Gene editing in plants: progress and challenges. National Science Review 6:421−37

doi: 10.1093/nsr/nwz005
[69]

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420−24

doi: 10.1038/nature17946
[70]

Hua K, Han P, Zhu JK. 2022. Improvement of base editors and prime editors advances precision genome engineering in plants. Plant Physiology 188:1795−810

doi: 10.1093/plphys/kiab591
[71]

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, et al. 2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551:464−71

doi: 10.1038/nature24644
[72]

Rees HA, Liu DR. 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics 19:770−88

doi: 10.1038/s41576-018-0059-1
[73]

Zhang X, Zhu B, Chen L, Xie L, Yu W, et al. 2020. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nature Biotechnology 38:856−60

doi: 10.1038/s41587-020-0527-y
[74]

Xie J, Huang X, Wang X, Gou S, Liang Y, et al. 2020. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biology 18:131

doi: 10.1186/s12915-020-00866-5
[75]

Li C, Zhang R, Meng X, Chen S, Zong Y, et al. 2020. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology 38:875−82

doi: 10.1038/s41587-019-0393-7
[76]

Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, et al. 2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology 39:41−46

doi: 10.1038/s41587-020-0609-x
[77]

Zhao D, Li J, Li S, Xin X, Hu M, et al. 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology 39:35−40

doi: 10.1038/s41587-020-0592-2
[78]

Liang Y, Xie J, Zhang Q, Wang X, Gou S, et al. 2022. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Researh 50:5384−99

doi: 10.1093/nar/gkac353
[79]

Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, et al. 2019. A cytosine deaminase for programmable single-base RNA editing. Science 365:382−86

doi: 10.1126/science.aax7063
[80]

Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, et al. 2017. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology 35:441−43

doi: 10.1038/nbt.3833
[81]

Lu Y, Zhu J. 2017. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Molecular Plant 10:523−25

doi: 10.1016/j.molp.2016.11.013
[82]

Li J, Sun Y, Du J, Zhao Y, Xia L. 2017. Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Molecular Plant 10:526−29

doi: 10.1016/j.molp.2016.12.001
[83]

Zuo E, Sun Y, Wei W, Yuan T, Ying W, et al. 2019. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364:289−92

doi: 10.1126/science.aav9973
[84]

Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, et al. 2019. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364:292−95

doi: 10.1126/science.aaw7166
[85]

Porto EM, Komor AC, Slaymaker IM, Yeo GW. 2020. Base editing: advances and therapeutic opportunities. Nature Reviews Drug Discovery 19:839−59

doi: 10.1038/s41573-020-0084-6
[86]

Liu Y, Zhou J, Lan T, Zhou X, Yang Y, et al. 2022. Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to target sites. Cell Discovery 8:28

doi: 10.1038/s41421-022-00384-4
[87]

Lin Q, Zong Y, Xue C, Wang S, Jin S, et al. 2020. Prime genome editing in rice and wheat. Nature Biotechnology 38:582−85

doi: 10.1038/s41587-020-0455-x
[88]

Tang X, Sretenovic S, Ren Q, Jia X, Li M, et al. 2020. Plant Prime Editors Enable Precise Gene Editing in Rice Cells. Molecular Plant 13:667−70

doi: 10.1016/j.molp.2020.03.010
[89]

Li H, Li J, Chen J, Yan L, Xia L. 2020. Precise modifications of both exogenous and endogenous genes in rice by prime editing. Molecular Plant 13:671−74

doi: 10.1016/j.molp.2020.03.011
[90]

Lin Q, Jin S, Zong Y, Yu H, Zhu Z, et al. 2021. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nature Biotechnology 39:923−7

doi: 10.1038/s41587-021-00868-w
[91]

Nelson JW, Randolph PB, Shen SP, Everette KA, Chen PJ, et al. 2022. Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology 40:402−10

doi: 10.1038/s41587-021-01039-7
[92]

Liu Y, Yang G, Huang S, Li X, Wang X, et al. 2021. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Research 31:1134−36

doi: 10.1038/s41422-021-00520-x
[93]

Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, et al. 2021. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184:5635−5652.E29

doi: 10.1016/j.cell.2021.09.018
[94]

Xu W, Yang Y, Yang B, Krueger CJ, Xiao Q, et al. 2022. A design optimized prime editor with expanded scope and capability in plants. Nature Plants 8:45−52

doi: 10.1038/s41477-021-01043-4
[95]

Zong Y, Liu Y, Xue C, Li B, Li X, et al. 2022. An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology 40:1394−402

doi: 10.1038/s41587-022-01254-w
[96]

Zou J, Meng X, Liu Q, Shang M, Wang K, et al. 2022. Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice. Science China Life sciences 65:2328−31

doi: 10.1007/s11427-022-2147-2
[97]

Gao C. 2021. Genome engineering for crop improvement and future agriculture. Cell 184:1621−35

doi: 10.1016/j.cell.2021.01.005
[98]

Hui S, Li H, Mawia AM, Zhou L, Cai J, et al. 2022. Production of aromatic three-line hybrid rice using novel alleles of BADH2. Plant Biotechnology Journal 20:59−74

doi: 10.1111/pbi.13695
[99]

Wang F, Wang C, Liu P, Lei C, Hao W, et al. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027

doi: 10.1371/journal.pone.0154027
[100]

Lu Y, Wang J, Chen B, Mo S, Lian L, et al. 2021. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nature Plants 7:1445−52

doi: 10.1038/s41477-021-01019-4
[101]

Zhang P, Du H, Wang J, Pu Y, Yang C, et al. 2020. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnology Journal 18:1384−95

doi: 10.1111/pbi.13302
[102]

Lorenzo CD, Debray K, Herwegh D, Develtere W, Impens L, et al. 2022. BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize. The Plant Cell 35:218−38

doi: 10.1093/plcell/koac243
[103]

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32:947−51

doi: 10.1038/nbt.2969
[104]

Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S. 2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports 7:482

doi: 10.1038/s41598-017-00578-x
[105]

Tripathi JN, Ntui VO, Shah T, Tripathi L. 2021. CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnology Journal 19:1291−93

doi: 10.1111/pbi.13614
[106]

Dong L, Li L, Liu C, Liu C, Geng S, et al. 2018. Genome editing and double-fluorescence proteins enable robust maternal haploid induction and identification in maize. Molecular Plant 11:1214−17

doi: 10.1016/j.molp.2018.06.011
[107]

Yao L, Zhang Y, Liu C, Liu Y, Wang Y, et al. 2018. OsMATL mutation induces haploid seed formation in indica rice. Nature Plants 4:530−33

doi: 10.1038/s41477-018-0193-y
[108]

Li X, Zhou W, Ren Y, Tian X, Lv T, et al. 2017. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. Journal of Genetics and Genomics 44:175−78

doi: 10.1016/j.jgg.2017.02.001
[109]

Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, et al. 2019. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal 17:421−34

doi: 10.1111/pbi.12987
[110]

Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C. 2017. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiology 174:935−42

doi: 10.1104/pp.17.00426
[111]

Ye M, Peng Z, Tang D, Yang Z, Li D, et al. 2018. Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants 4:651−4

doi: 10.1038/s41477-018-0218-6
[112]

Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, et al. 2018. De novo domestication of wild tomato using genome editing. Nature Biotechnology 36:1211−16

doi: 10.1038/nbt.4272
[113]

Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, et al. 2018. Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants 4:766−70

doi: 10.1038/s41477-018-0259-x
[114]

Yu H, Lin T, Meng X, Du H, Zhang J, et al. 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184:1156−1170.E14

doi: 10.1016/j.cell.2021.01.013
[115]

Schmitz RJ. 2014. Genetics. The secret garden—epigenetic alleles underlie complex traits. Science 343:1082−83

doi: 10.1126/science.1251864
[116]

Miryeganeh M, Saze H. 2020. Epigenetic inheritance and plant evolution. Population Ecology 62:17−27

doi: 10.1002/1438-390X.12018
[117]

Giordano A, Santo Domingo M, Quadrana L, Pujol M, Martín-Hernández AM, et al. 2022. CRISPR/Cas9 gene editing uncovers the roles of CONSTITUTIVE TRIPLE RESPONSE 1 and REPRESSOR OF SILENCING 1 in melon fruit ripening and epigenetic regulation. Journal of Experimental Botany 73:4022−33

doi: 10.1093/jxb/erac148
[118]

Pan C, Sretenovic S, Qi Y. 2021. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Current Opinion in Plant Biology 60:101980

doi: 10.1016/j.pbi.2020.101980
[119]

Liu X, Wu H, Ji X, Stelzer Y, Wu X, et al. 2016. Editing DNA Methylation in the Mammalian Genome. Cell 167:233−247.E17

doi: 10.1016/j.cell.2016.08.056
[120]

Nuñez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, et al. 2021. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184:2503−2519.E17

doi: 10.1016/j.cell.2021.03.025
[121]

Papikian A, Liu W, Gallego-Bartolome J, Jacobsen SE. 2019. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nature Communications 10:729

doi: 10.1038/s41467-019-08736-7
[122]

Lee JE, Neumann M, Duro DI, Schmid M. 2019. CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants. PloS one 14:e0222778

doi: 10.1371/journal.pone.0222778
[123]

Tadić V, Josipović G, Zoldoš V, Vojta A. 2019. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods 164-165:109−19

doi: 10.1016/j.ymeth.2019.05.003
[124]

Qiu X, Zhu L, Zhu C, Ma J, Hou T, et al. 2018. Highly effective and low-cost MicroRNA detection with CRISPR-Cas9. ACS Synthetic Biology 7:807−13

doi: 10.1021/acssynbio.7b00446
[125]

Wheatley MS, Yang Y. 2021. Versatile applications of the CRISPR/Cas toolkit in plant pathology and disease management. Phytopathology 111:1080−90

doi: 10.1094/PHYTO-08-20-0322-IA
[126]

Zhang D, Guo J. 2011. The development and standardization of testing methods for genetically modified organisms and their derived products. Journal of Integrative Plant Biology 53:539−51

doi: 10.1111/j.1744-7909.2011.01060.x
[127]

Abudayyeh OO, Gootenberg JS, Kellner MJ, Zhang F. 2019. Nucleic Acid Detection of Plant Genes Using CRISPR-Cas13. The CRISPR Journal 2:165−71

doi: 10.1089/crispr.2019.0011
[128]

Mahas A, Hassan N, Aman R, Marsic T, Wang Q, et al. 2021. LAMP-coupled CRISPR-Cas12a module for rapid and sensitive detection of plant DNA viruses. Viruses 13:466

doi: 10.3390/v13030466
[129]

Wheatley MS, Wang Q, Wei W, Bottner-Parker KD, Zhao Y, Yang Y. 2022. Cas12a-based diagnostics for potato purple top disease complex associated with infection by 'Candidatus Phytoplasma trifolii'-related strains. Plant Disease 106:2039−45

doi: 10.1094/PDIS-09-21-2119-RE
[130]

Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019. CRISPR/Cas Genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70:667−97

doi: 10.1146/annurev-arplant-050718-100049
[131]

Kunling CHEN CG. 2020. Genome-edited crops: how to move them from laboratory to market. Frontiers of Agricultural Science and Engineering 7:181−7

doi: 10.15302/j-fase-2020332