[1]

Whipps JM. 1993. A review of white rust (Puccinia horiana Henn.) disease on chrysanthemum and the potential for its biological control with Verticillium lecanii (Zimm.) Viégas. Annals of Applied Biology 122:173−87

doi: 10.1111/j.1744-7348.1993.tb04025.x
[2]

De Jong J and Rademaker W. 1986. The reaction of Chrysanthemum cultivars to Puccinia horiana and the inheritance of resistance. Euphytica 35:945−52

doi: 10.1007/BF00028604
[3]

Zhu P, Zhao N, Qi D, Liu N, and Duan Y. 2011. Optimization of identification standards and artificial inoculation methods in vitro on resistance to chrysanthemum white rust. Chinese Agricultural Science Bulletin 27:149−52

[4]

Matsuura S. 2019. Does QoI (strobilurin) resistance in isolates of Puccinia horiana, the causal agent of chrysanthemum white rust, occur in western Japan? Journal of Plant Diseases and Protection 126:469−73

doi: 10.1007/s41348-019-00224-w
[5]

O’Keefe G, and Davis DD. 2015. Morphology of Puccinia horiana, causal agent of chrysanthemum white rust, sampled from naturally infected plants. Plant Disease 99:1738−43

doi: 10.1094/PDIS-02-15-0239-RE
[6]

Bonde MR, Murphy CA, Bauchan GR, Luster DG, Palmer CL, et al. 2015. Evidence for systemic infection by Puccinia horiana, causal agent of chrysanthemum white rust, in chrysanthemum. Phytopathology 105:91−98

doi: 10.1094/PHYTO-09-13-0266-R
[7]

Ellison MA, McMahon MB, Bonde MR, Palmer CL, Luster DG. 2016. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections. Plant Methods 12:37

doi: 10.1186/s13007-016-0137-3
[8]

Torres DE, Rojas-Martínez RI, Zavaleta-Mejía E, Guevara-Fefer P, Márquez-Guzmán GJ, et al. 2017. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of Chrysanthemum white rust. PloS One 12:e0170782

doi: 10.1371/journal.pone.0170782
[9]

Dheepa R, Vinodkumar S, Renukadevi P, Nakkeeran S. 2016. Phenotypic and molecular characterization of Chrysanthemum white rust pathogen Puccinia horiana (Henn) and the effect of liquid based formulation of Bacillus spp. for the management of Chrysanthemum white rust under protected cultivation. Biological Control 103:172−86

doi: 10.1016/j.biocontrol.2016.09.006
[10]

Alaei H, de Backer M, Nuytinck J, Maes, M, Höfte M, et al. 2009. Phylogenetic relationships of Puccinia horiana and other rust pathogens of Chrysanthemum× morifolium based on rDNA ITS sequence analysis. Mycological Research 113:668−83

doi: 10.1016/j.mycres.2009.02.003
[11]

de Backer M, Bonants P, Pedley KF, Maes M, Roldan-Ruiz I, et al. 2013. Genetic relationships in an international collection of Puccinia horiana isolates based on newly identified molecular markers and demonstration of recombination. Phytopathology 103:1169−79

doi: 10.1094/PHYTO-01-13-0007-R
[12]

Demers JE, Crouch JA, Castlebury LA. 2015. A multiplex real-time PCR assay for the detection of Puccinia horiana and P. chrysanthemi on chrysanthemum. Plant Disease 99:195−200

doi: 10.1094/PDIS-06-14-0632-RE
[13]

De Backer M, Alaei H, Van Bockstaele E, Roldan-Ruiz I, van der Lee T, et al. 2011. Identification and characterization of pathotypes in Puccinia horiana, a rust pathogen of Chrysanthemum ×morifolium. European Journal of Plant Pathology 130:325−38

doi: 10.1007/s10658-011-9756-8
[14]

Park SK, Lim JH, Shin HK, Jung JA, Kwon YS, et al. 2014. Identification of Chrysanthemum genetic resources resistant to white rust caused by Puccinia horiana. Plant Breeding and Biotechnology 2:184−93

doi: 10.9787/PBB.2014.2.2.184
[15]

Zeng J, Sun J, Xu Y, Chen F, Jiang J, et al. 2013. Variation for resistance to white rust (Puccinia horiana) among Ajania and Chrysanthemum species. Horticultural Science 48:1231−4

doi: 10.21273/HORTSCI.48.10.1231
[16]

Thakur N, Nair SA, Sriram S, Kumar R. 2019. Identification of resistant sources in chrysanthemum to white rust. Indian Phytopathology 72:513−18

doi: 10.1007/s42360-019-00164-3
[17]

Kumar S, Kumar R, Sriram S, Aswath C, Rao TM, et al. 2021. Screening of chrysanthemum (Dendranthema grandiflora) genotypes for resistance to white rust (Puccinia horiana Henn. ). Journal of Pharmacognosy and Phytochemistry 10:293−97

doi: 10.22271/phyto.2021.v10.i2d.13820
[18]

Sumitomo K, Shirasawa K, Isobe SN, Hirakawa H, Harata A, et al. 2021. DNA marker for resistance to Puccinia horiana in chrysanthemum (Chrysanthemum morifolium Ramat.) "Southern Pegasus". Breeding Science 71:261−7

doi: 10.1270/jsbbs.20063
[19]

Bi M, Li X, Yan X, Liu D, Gao G, et al. 2021. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. Horticulture Research 8:6

doi: 10.1038/s41438-020-00436-4
[20]

Gao G, Jin R, Liu D, Zhang X, Sun X, et al. 2022. CmWRKY15-1 promotes resistance to chrysanthemum white rust by regulating CmNPR1 expression. Frontiers in Plant Science 13:865607

doi: 10.3389/fpls.2022.865607
[21]

McHale L, Tan X, Koehl P, Michelmore RW. 2006. Plant NBS-LRR proteins: adaptable guards. Genome Biology 7:212

doi: 10.1186/gb-2006-7-4-21
[22]

Lukasik E, Takken FL. 2009. STANDing strong, resistance proteins instigators of plant defence. Current Opinion in Plant Biology 12:427−36

doi: 10.1016/j.pbi.2009.03.001
[23]

Li J, Huang H, Zhu M, Huang S, Zhang W, et al. 2019. A plant immune receptor adopts a two-step recognition mechanism to enhance viral effector perception. Molecular Plant 12:248−62

doi: 10.1016/j.molp.2019.01.005
[24]

Jones JD, Dangl JL. 2006. The plant immune system. Nature 444:323−29

doi: 10.1038/nature05286
[25]

Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics 11:539−48

doi: 10.1038/nrg2812
[26]

Lee HA, Yeom SI. 2015. Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Briefings in Functional Genomics 14:233−42

doi: 10.1093/bfgp/elv012
[27]

Takken FLW, Albrecht M, and Tameling WIL. 2006. Resistance proteins: molecular switches of plant defence. Current Opinion in Plant Biology 9:383−90

doi: 10.1016/j.pbi.2006.05.009
[28]

Takken FLW, Tameling WIL. 2009. To nibble at plant resistance proteins. Science 324:744−6

doi: 10.1126/science.1171666
[29]

Wang J, Chen T, Han M, Qian L, Li J, et al. 2020. Plant NLR immune receptor Tm-22 activation requires NB-ARC domain-mediated self-association of CC domain. PLoS Pathogens 16:e1008475

doi: 10.1371/journal.ppat.1008475
[30]

Burch-Smith TM, Dinesh-Kumar SP. 2007. The functions of plant TIR domains. Science's STKE 2007:pe46

doi: 10.1126/stke.4012007pe46
[31]

Takken FLW, Goverse A. 2012. How to build a pathogen detector: structural basis of NB-LRR function. Current Opinion in Plant Biology 15:375−84

doi: 10.1016/j.pbi.2012.05.001
[32]

Chen X, Zhu M, Jiang L, Zhao W, Li J, et al. 2016. A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain. New Phytologist 212:161−75

doi: 10.1111/nph.14013
[33]

van der Biezen EA, Jones JD. 1998. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology 8:R226−R228

doi: 10.1016/S0960-9822(98)70145-9
[34]

van Ooijen G, Mayr G, Kasiem MMA, Albrecht M, Cornelissen BJC, et al. 2008. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany 59:1383−97

doi: 10.1093/jxb/ern045
[35]

Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJA, et al. 2012. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13:75

doi: 10.1186/1471-2164-13-75
[36]

Chandra S, Kazmi AZ, Ahmed Z, Roychowdhury G, Kumari V, et al. 2017. Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum aestivum L.) and their expression during leaf rust infection. Plant Cell Reports 36:1097−1112

doi: 10.1007/s00299-017-2141-0
[37]

Wang X, Zhang H, Nyamesorto B, Luo Y, Mu X, et al. 2020. A new mode of NPR1 action via an NB-ARC-NPR1 fusion protein negatively regulates the defence response in wheat to stem rust pathogen. New Phytologist 228:959−72

doi: 10.1111/nph.16748
[38]

Hayashi N, Inoue H, Kato T, Funao T, Shirota M, et al. 2010. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal 64:498−510

doi: 10.1111/j.1365-313X.2010.04348.x
[39]

Wen C, Mao A, Dong C, Liu H, Yu S, et al. 2015. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L. Theoretical and Applied Genetics 128:2495−506

doi: 10.1007/s00122-015-2604-z
[40]

Arora H, Padmaja KL, Paritosh K, Mukhi N, Tewari AK, et al. 2019. BjuWRR1, a CC-NB-LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candida. Theoretical and Applied Genetics 132:2223−36

doi: 10.1007/s00122-019-03350-z
[41]

Chakraborty J, Priya P, Dastidar SG, Das S. 2018. Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea. Plant Science 276:111−33

doi: 10.1016/j.plantsci.2018.08.008
[42]

Zhang Y, Zhang Q, Hao L, Wang S, Wang S, et al. 2019. A novel miRNA negatively regulates resistance to Glomerella leaf spot by suppressing expression of an NBS gene in apple. Horticulture Research 6:93

doi: 10.1038/s41438-019-0175-x
[43]

Islam MR, Hossain MR, Jesse DMI, Jung HJ, Kim HT, et al. 2020. Characterization, identification and expression profiling of genome-wide R-genes in melon and their putative roles in bacterial fruit blotch resistance. BMC Genetics 21:80

doi: 10.1186/s12863-020-00885-9
[44]

Gedil MA, Slabaugh MB, Berry S, Johnson R, Michelmore R, et al. 2001. Candidate disease resistance genes in sunflower cloned using conserved nucleotide-binding site motifs: genetic mapping and linkage to the downy mildew resistance gene Pl1. Genome 44:205−12

doi: 10.1139/g00-110
[45]

Radwan O, Bouzidi MF, Nicolas P, and Mouzeyar S. 2004. Development of PCR markers for the Pl5/Pl8 locus for resistance to Plasmopara halstedii in sunflower, Helianthus annuus L. from complete CC-NBS-LRR sequences. Theoretical and Applied Genetics 109:176−85

doi: 10.1007/s00122-004-1613-0
[46]

Qi LL, Hulke BS, Vick BA, Gulya TJ. 2011. Molecular mapping of the rust resistance gene R4 to a large NBS-LRR cluster on linkage group 13 of sunflower. Theoretical and Applied Genetics 123:351−8

doi: 10.1007/s00122-011-1588-6
[47]

Kaufmann H, Mattiesch L, Lörz H, Debener T. 2003. Construction of a BAC library of Rosa rugosa Thunb. and assembly of a contig spanning Rdr1, a gene that confers resistance to blackspot. Molecular Genetics and Genomics 268:666−74

doi: 10.1007/s00438-002-0784-0
[48]

Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321−26

doi: 10.1093/nar/8.19.4321
[49]

Feng X, Li X, Yang X, Zhu P. 2020. Fine mapping and identification of the leaf shape gene BoFL in ornamental kale. Theoretical and Applied Genetics 133:1303−12

doi: 10.1007/s00122-020-03551-x
[50]

Shen Q, Zhang L, Liao Z, Wang S, Yan T, et al. 2018. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Molecular Plant 11:776−88

doi: 10.1016/j.molp.2018.03.015
[51]

Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, et al. 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications 8:14953

doi: 10.1038/ncomms14953
[52]

Radwan O, Mouzeyar S, Nicolas P, Bouzidi MF. 2005. Induction of a sunflower CC-NBS-LRR resistance gene analogue during incompatible interaction with Plasmopara halstedii. Journal of Experimental Botany 56:567−75

doi: 10.1093/jxb/eri030
[53]

Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, et al. 2007. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Molecular Biology 65:93−106

doi: 10.1007/s11103-007-9201-8
[54]

Borhan MH, Holub EB, Beynon JL, Rozwadowski K, Rimmer SR. 2004. The Arabidopsis TIR-NB-LRR geneRAC1 confers resistance to Albugo candida (white rust) and is dependent on EDS1 but not PAD4. Molecular Plant-Microbe Interactions 17:711−19

doi: 10.1094/MPMI.2004.17.7.711
[55]

Song C, Liu Y, Song A, Dong G, Zhao H, et al. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Molecular Plant 11:1482−91

doi: 10.1016/j.molp.2018.10.003
[56]

Feng X, Zhang Y, Wang H, Tian Z, Xin S, et al. 2021. The dihydroflavonol 4-reductase BoDFR1 drives anthocyanin accumulation in pink-leaved ornamental kale. Theoretical and Applied Genetics 134:159−69

doi: 10.1007/s00122-020-03688-9
[57]

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406−25

doi: 10.1093/oxfordjournals.molbev.a040454
[58]

Felenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783−91

doi: 10.2307/2408678
[59]

Kumar S, Stecher G, and Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74

doi: 10.1093/molbev/msw054
[60]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time uantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[61]

Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. Evolving Genes and Proteins97−166

doi: 10.1016/B978-1-4832-2734-4.50017-6
[62]

Rairdan GJ, Collier SM, Sacco MA, Baldwin TT, Boettrich T, et al. 2008. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. The Plant Cell 20:739−51

doi: 10.1105/tpc.107.056036
[63]

Yildirim-Ersoy F, Ridout CJ, Akkaya MS. 2011. Detection of physically interacting proteins with the CC and NB-ARC domains of a putative yellow rust resistance protein, Yr10, in wheat. Journal of Plant Diseases and Protection 118:119−26

doi: 10.1007/BF03356391
[64]

Jiang N, Cui J, Meng J, Luan Y. 2018. A tomato nucleotide binding sites-leucine-rich repeat gene is positively involved in plant resistance to Phytophthora infestans. Phytopathology 108:980−87

doi: 10.1094/PHYTO-12-17-0389-R
[65]

Kolmer JA. 1996. Genetics of resistance to wheat leaf rust. Annual Review of Phytopathology 34:435−55

doi: 10.1146/annurev.phyto.34.1.435