[1]

Austin D. 1999. Botanica's roses: the encyclopedia of roses. New York: Welcome Rain Publishers. 704 pp. https://catalog.lib.ncsu.edu/catalog/NCSU1366015

[2]

Cairns T. 2003. Horticultural Classification Schemes. In Reference Module in Life Sciences, Encyclopedia of Rose Science, eds. Roberts AV, Debener T, Gudin S. London: Academic Press. pp 117−24. http://doi.org/10.1016/B0-12-227620-5/00022-7

[3]

Rehder A. 1940. Manual of cultivated trees and shrubs. New York: The Macmillan Company. 996 pp.

[4]

Wissemann V. 2003. Conventional Taxonomy (Wild Roses). In Encyclopedia of Rose Science, eds. Roberts AV, Debener T, Gudin S. London: Academic Press. pp. 111−17. https://doi.org/10.1016/B0-12-227620-5/00019-7

[5]

Darlington CD, Wylie AP. 1955. Chromosome atlas of flowering plants. London: Allen & Unwin. 519 pp. https://catalog.lib.ncsu.edu/catalog/NCSU449130

[6]

Gudin S. 2000. Rose: genetics and breeding. In Plant Breeding Reviews, ed. Janick J. 17:viii,338. USA: John Wiley & Sons. pp. 159−90. https://doi.org/10.1002/9780470650134.ch3

[7]

Koopman WJM, Wissemann V, de Cock K, van Huylenbroeck J, de Riek J, et al. 2008. AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae). American Journal of Botany 95:353−66

doi: 10.3732/ajb.95.3.353
[8]

Crane YM, Byrne DH. 2003. Karyology. In Reference Module in Life Sciences, Encyclopedia of Rose Science, eds. Roberts AV, Debener T, Gudin S. London: Academic Press. pp. 267−73. https://doi.org/10.1016/B0-12-227620-5/00026-4

[9]

Wylie AP. 1954. Chromosomes of garden roses. In The American Rose Annual. vol. 39. Harrisburg, Pa: American Rose Society. pp. 36−66. https://catalog.lib.ncsu.edu/catalog/NCSU279108

[10]

Shahare ML, Shastry SVS. 1963. Meiosis in garden roses. Chromosoma 13:702−24

doi: 10.1007/BF00325984
[11]

Rowley G. 1960. Aneuploidy in the genus Rosa. Journal of Genetics 57:253−68

doi: 10.1007/BF02987232
[12]

Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ. 1992. Nuclear DNA content variation within the Rosaceae. American Journal of Botany 79:1081−86

doi: 10.1002/j.1537-2197.1992.tb13697.x
[13]

Roberts AV, Gladis T, Brumme H. 2009. DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels. Plant Cell Reports 28:61−71

doi: 10.1007/s00299-008-0615-9
[14]

Zlesak DC. 2006. Rose. In Flower Breeding and Genetics, ed. Anderson NO. Netherlands: Springer. pp. 695−738. https://doi.org/10.1007/978-1-4020-4428-1_26

[15]

Gudin S. 2003. Breeding overview. In Encyclopedia of Rose Science, eds. Roberts AV, Debener T, Gudin S. London: Academic Press. pp. 25−30. https://doi.org/10.1016/B0-12-227620-5/00175-0

[16]

van Huylenbroeck J, Leus L, van Bockstaele E. 2005. Interploidy crosses in roses: use of triploids. Acta Horticulturae 690:109−12

doi: 10.17660/ActaHortic.2005.690.15
[17]

Crespel L, Gudin S. 2003. Evidence for the production of unreduced gametes by tetraploid Rosa hybrida L. Euphytica 133:65−69

doi: 10.1023/A:1025640405827
[18]

Ueckert J, Byrne D, Crosby K, Hodnett G, Stelly D. 2013. The utilization of the polyploid nature of roses. Acta Horticulturae 1064:73−78

doi: 10.17660/ActaHortic.2015.1064.9
[19]

Mokadem HE, Crespel L, Meynet J, Gudin S. 2002. The occurrence of 2n-pollen and the origin of sexual polyploids in dihaploid roses (Rosa hybrida L.). Euphytica 125:169−77

doi: 10.1023/A:1015830803459
[20]

Crespel L, Gudin S, Meynet J, Zhang D. 2002. AFLP-based estimation of 2n gametophytic heterozygosity in two parthenogenetically derived dihaploids of Rosa hybrida L. Theoretical and Applied Genetics 104:451−56

doi: 10.1007/s001220100695
[21]

Werlemark G. 2000. Evidence of apomixis in hemisexual dogroses, Rosa section Caninae. Sexual Plant Reproduction 12:353−59

doi: 10.1007/s004970000028
[22]

Werlemark G, Uggla M, Nybom H. 1999. Morphological and RAPD markers show a highly skewed distribution in a pair of reciprocal crosses between hemisexual dogrose species, Rosa sect Caninae. Theoretical and Applied Genetics 98:557−63

doi: 10.1007/s001220051104
[23]

Klášterská I, Natarajan AT. 1974. Cytological studies of the genus Rosa with special reference to the section Caninae. Hereditas 76:97−108

doi: 10.1111/j.1601-5223.1974.tb01181.x
[24]

Greilhuber J. 1998. Intraspecific variation in genome size: a critical reassessment. Annals of Botany 82:27−35

doi: 10.1006/anbo.1998.0725
[25]

Rounsaville TJ, Ranney TG. 2010. Ploidy levels and genome sizes of Berberis Land Mahonia Nutt. species, hybrids, and cultivars. HortScience 45:1029−33

doi: 10.21273/HORTSCI.45.7.1029
[26]

Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development 35:119−25

doi: 10.1016/j.gde.2015.11.003
[27]

Laport RG, Ng J. 2017. Out of one, many: The biodiversity considerations of polyploidy. American Journal of Botany 104:1119−21

doi: 10.3732/ajb.1700190
[28]

Ranney TG, Ryan CF, Deans LE, Lynch NP. 2018. Cytogenetics and genome size evolution in Illicium L. HortScience 53:620−23

doi: 10.21273/HORTSCI12922-18
[29]

Shearer K, Ranney TG. 2013. Ploidy levels and relative genome sizes of species, hybrids, and cultivars of dogwood (Cornus spp.). HortScience 48:825−30

doi: 10.21273/HORTSCI.48.7.825
[30]

Jones JR, Ranney TG, Lynch NP, Krebs SL. 2007. Ploidy levels and relative genome sizes of diverse species, hybrids, and cultivars of Rhododendron. Journal American Rhododendron Society 61:220−27

[31]

Lattier JD, Ranney TG, Fantz, PR, Avent T. 2014. Identification, nomenclature, genome sizes, and ploidy levels of Liriope and Ophiopogon Taxa. HortScience 49:145−51

doi: 10.21273/HORTSCI.49.2.145
[32]

Hembree WG, Ranney TG, Lynch NP, Jackson, BE. 2020. Identification, genome sizes, and ploidy of Deutzia. Journal of the American Society for Horticultural Science 145:88−94

doi: 10.21273/JASHS04779-19
[33]

Parris JK, Ranney, TG, Knap HT, Baird WV. 2010. Ploidy levels, relative genome sizes, and base pair composition in Magnolia. Journal of the American Society for Horticultural Science 135:533−47

doi: 10.21273/JASHS.135.6.533
[34]

Doležel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2:2233−44

doi: 10.1038/nprot.2007.310
[35]

Moyne AL, Souq F, Yean LH, Brown SC, Boulay M, et al. 1993. Relationship between cell ploidy and regeneration capacity of long term Rosa hybrida cultures. Plant Science 93:159−68

doi: 10.1016/0168-9452(93)90045-2
[36]

Kermani MJ, Jowkar A, Hoseini ZS, Koobaz P. 2017. Chromosome measurements of wild roses of Iran. ISHS Acta Horticulturae 1240:27−32

doi: 10.17660/ActaHortic.2019.1240.4
[37]

Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE. 2000. Nuclear DNA amounts in roses. Annals of Botany 85:557−61

doi: 10.1006/anbo.1999.1102
[38]

Zlesak DC, Whitaker VM, George S, Hokanson SC. 2010. Evaluation of roses from the Earth-Kind® trials: black spot (Diplocarpon rosae Wolf) resistance and ploidy. HortScience 45:1779−87

doi: 10.21273/HORTSCI.45.12.1779
[39]

Jacob Y, Teyssier C, Reynders-Aloisi S, Brown SC. 1996. Use of flow cytometry for the rapid determination of ploidy level in the genus Rosa. Acta Horticulturae 424:273−78

doi: 10.17660/ActaHortic.1996.424.49
[40]

Zlesak DC. 2009. Pollen diameter and guard cell length as predictors of ploidy in diverse rose cultivars, species, and breeding lines. Floriculture & Ornamental Biotechnology 3:53−70

[41]

Ranney TG. 2006. Polyploidy: From evolution to new plant development. Combined Proceedings International Plant Propagators' Society 56:383−89

[42]

Lattier JD, Chen H, Contreras RN. 2019. Variation in genome size, ploidy, stomata, and rDNA signals in Althea. Journal of the American Society for Horticultural Science 144:130−40

doi: 10.21273/JASHS04618-18
[43]

Greilhuber J, Temsch EM, Loureiro JC. 2007. Nuclear DNA content measurement. In Flow Cytometry with Plant Cells: Analysis of Genes, Chromosomes and Genomes, eds. Jaroslav Dolezel J, Greilhuber J, Suda J. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. pp. 67−101. https://doi.org/10.1002/9783527610921.ch4

[44]

Chen H, Chung MC, Tsai YC, Wei FJ, Hsieh JS, et al. 2015. Distribution of new satellites and simple sequence repeats in annual and perennial Glycine species. Botanical Studies 56:22

doi: 10.1186/s40529-015-0103-9