[1]

Zohary D, Hopf M. 2000. Domestication of plants in the old world : the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford: Oxford University Press. XI, 316 pp.

[2]

FAOSTAT. 2022. Value of agricultural production. www.fao.org/faostat/en/#data/QV

[3]

Heffner EL, Sorrells ME, Jannink JL. 2009. Genomic selection for crop improvement. Crop Science 49:1−12

doi: 10.2135/cropsci2008.08.0512
[4]

Edge-Garza DA, Luby JJ, Peace C. 2015. Decision support for cost-efficient and logistically feasible marker-assisted seedling selection in fruit breeding. Molecular Breeding 35:223

doi: 10.1007/s11032-015-0409-z
[5]

Luby JJ, Shaw DV. 2001. Does marker-assisted selection make dollars and sense in a fruit breeding program? HortScience 36:872−79

doi: 10.21273/hortsci.36.5.872
[6]

Nybom H, Ahmadi-Afzadi M, Sehic J, Hertog M. 2013. DNA marker-assisted evaluation of fruit firmness at harvest and post-harvest fruit softening in a diverse apple germplasm. Tree Genetics & Genomes 9:279−90

doi: 10.1007/s11295-012-0554-z
[7]

Migicovsky Z, Yeats TH, Watts S, Song J, Forney CF, et al. 2021. Apple ripening is controlled by a NAC transcription factor. Frontiers in Genetics 12:671300

doi: 10.3389/fgene.2021.671300
[8]

Wang F, Wang C, Liu P, Lei C, Hao W, et al. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027

doi: 10.1371/journal.pone.0154027
[9]

Jia H, Zhang Y, Orbović V, Xu J, White FF, et al. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Biotechnology Journal 15:817−23

doi: 10.1111/pbi.12677
[10]

Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, et al. 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology 169:931−45

doi: 10.1104/pp.15.00793
[11]

Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, et al. 2019. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Frontiers in Plant Science 10:40

doi: 10.3389/fpls.2019.00040
[12]

Malabarba J, Chevreau E, Dousset N, Veillet F, Moizan J, et al. 2021. New strategies to overcome present CRISPR/Cas9 limitations in apple and pear: efficient dechimerization and base editing. International Journal of Molecular Sciences 22:319

doi: 10.3390/ijms22010319
[13]

McClure KA, Gong Y, Song J, Vinqvist-Tymchuk M, Campbell Palmer L, et al. 2019. Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols. Horticulture Research 6:107

doi: 10.1038/s41438-019-0190-y
[14]

Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel CE, et al. 2014. Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theoretical and Applied Genetics 127:1073−90

doi: 10.1007/s00122-014-2281-3
[15]

Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, et al. 2012. QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biology 12:12

doi: 10.1186/1471-2229-12-12
[16]

Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, et al. 2017. Genome-wide association mapping of flowering and ripening periods in apple. Frontiers in Plant Science 8:1923

doi: 10.3389/fpls.2017.01923
[17]

Jung M, Roth M, Aranzana MJ, Auwerkerken A, Bink M, et al. 2020. The apple REFPOP-a reference population for genomics-assisted breeding in apple. Horticulture Research 7:189

doi: 10.1038/s41438-020-00408-8
[18]

Larsen B, Migicovsky Z, Jeppesen AA, Gardner KM, Toldam-Andersen TB, et al. 2019. Genome-wide association studies in apple reveal loci for aroma volatiles, sugar composition, and harvest date. The Plant Genome 12:180104

doi: 10.3835/plantgenome2018.12.0104
[19]

Migicovsky Z, Gardner KM, Money D, Sawler J, Bloom JS, et al. 2016. Genome to phenome mapping in apple using historical data. The Plant Genome 9:plantgenome2015.11.0113

doi: 10.3835/plantgenome2015.11.0113
[20]

Khan SA, Chibon PY, de Vos RCH, Schipper BA, Walraven E, et al. 2012. Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. Journal of Experimental Botany 63:2895−908

doi: 10.1093/jxb/err464
[21]

Di Guardo M, Bink MCAM, Guerra W, Letschka T, Lozano L, et al. 2017. Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. Journal of Experimental Botany 68:1451−66

doi: 10.1093/jxb/erx017
[22]

Wu B, Shen F, Chen CJ, Liu L, Wang X, et al. 2021. Natural variations in a pectin acetylesterase gene, MdPAE10, contribute to prolonged apple fruit shelf life. The Plant Genome 14:e20084

doi: 10.1002/tpg2.20084
[23]

McClure KA, Gardner KM, Douglas GM, Song J, Forney CF, et al. 2018. A genome-wide association study of apple quality and scab resistance. The Plant Genome 11:170075

doi: 10.3835/plantgenome2017.08.0075
[24]

Dong W, Wu D, Li G, Wu D, Wang Z. 2018. Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon. Scientific Reports 8:2908

doi: 10.1038/s41598-018-21293-1
[25]

Welling MT, Liu L, Kretzschmar T, Mauleon R, Ansari O, et al. 2020. An extreme-phenotype genome-wide association study identifies candidate cannabinoid pathway genes in Cannabis. Scientific Reports 10:18643

doi: 10.1038/s41598-020-75271-7
[26]

Ren S, Lyu G, Irwin DM, Liu X, Feng C, et al. 2021. Pooled sequencing analysis of geese (Anser cygnoides) reveals genomic variations associated with feather color. Frontiers in Genetics 12:650013

doi: 10.3389/fgene.2021.650013
[27]

Ban S, Xu K. 2020. Identification of two QTLs associated with high fruit acidity in apple using pooled genome sequencing analysis. Horticulture Research 7:171

doi: 10.1038/s41438-020-00393-y
[28]

Dougherty L, Singh R, Brown S, Dardick C, Xu K. 2018. Exploring DNA variant segregation types in pooled genome sequencing enables effective mapping of weeping trait in Malus. Journal of Experimental Botany 69:1499−516

doi: 10.1093/jxb/erx490
[29]

Kumar S, Deng CH, Molloy C, Kirk C, Plunkett B, et al. 2022. Extreme-phenotype GWAS unravels a complex nexus between apple (Malus domestica) red-flesh colour and internal flesh browning. Fruit Research 2:12

doi: 10.48130/frures-2022-0012
[30]

Kofler R, Pandey RV, Schlötterer C. 2011. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 27:3435−36

doi: 10.1093/bioinformatics/btr589
[31]

Spitzer K, Pelizzola M, Futschik A. 2019. Modifying the Chi-square and the CMH test for population genetic inference: adapting to over-dispersion. arXiv Applications (stat.AP). Conell University, 36 pp.

[32]

Watts S, Migicovsky Z, McClure KA, Yu CHJ, Amyotte B, et al. 2021. Quantifying apple diversity: a phenomic characterization of Canada’s apple biodiversity collection. Plants, People, Planet 3:747−60

doi: 10.1002/ppp3.10211
[33]

Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49:1099−106

doi: 10.1038/ng.3886
[34]

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094−100

doi: 10.1093/bioinformatics/bty191
[35]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754−60

doi: 10.1093/bioinformatics/btp324
[36]

Ries D, Holtgräwe D, Viehöver P, Weisshaar B. 2016. Rapid gene identification in sugar beet using deep sequencing of DNA from phenotypic pools selected from breeding panels. BMC Genomics 17:236

doi: 10.1186/s12864-016-2566-9
[37]

Taus T, Futschik A, Schlötterer C. 2017. Quantifying Selection with Pool-Seq Time Series Data. Molecular Biology and Evolution 34:3023−34

doi: 10.1093/molbev/msx225
[38]

Turner SD. 2018. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. Journal of Open Source Software 3:731

doi: 10.21105/joss.00731
[39]

Alexa A, Rahnenfuhrer J. 2020. topGO: Enrichment Analysis for Gene Ontology. https://rdrr.io/bioc/topGO/

[40]

Ranavat S, Becher H, Newman MF, Gowda V, Twyford AD. 2021. A draft genome of the ginger species Alpinia nigra and new insights into the genetic basis of flexistyly. Genes 12:1297

doi: 10.3390/genes12091297
[41]

Tan Q, Li S, Zhang Y, Chen M, Wen B, et al. 2021. Chromosome-level genome assemblies of five Prunus species and genome-wide association studies for key agronomic traits in peach. Horticulture Research 8:213

doi: 10.1038/s41438-021-00648-2
[42]

Tian Y, Thrimawithana A, Ding T, Guo J, Gleave A, et al. 2022. Transposon insertions regulate genome-wide allele-specific expression and underpin flower colour variations in apple (Malus spp.). Plant Biotechnology Journal 20:1285−97

doi: 10.1111/pbi.13806
[43]

Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, et al. 2021. Histidine kinases: diverse functions in plant development and responses to environmental conditions. Annual Review of Plant Biology 72:297−323

doi: 10.1146/annurev-arplant-080720-093057
[44]

Busatto N, Tadiello A, Trainotti L, Costa F. 2017. Climacteric ripening of apple fruit is regulated by transcriptional circuits stimulated by cross-talks between ethylene and auxin. Plant Signaling & Behavior 12:e1268312

doi: 10.1080/15592324.2016.1268312
[45]

Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C. 2013. Fruit development and ripening. Annual Review of Plant Biology 64:219−41

doi: 10.1146/annurev-arplant-050312-120057
[46]

Nawaz I, Tariq R, Nazir T, Khan I, Basit A, et al. 2021. RNA-Seq profiling reveals the plant hormones and molecular mechanisms stimulating the early ripening in apple. Genomics 113:493−502

doi: 10.1016/j.ygeno.2020.09.040
[47]

Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olszewski N, et al. 2005. Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 17:92−102

doi: 10.1105/tpc.104.028472
[48]

Lin Z, Ho CW, Grierson D. 2009. AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis. Journal of Experimental Botany 60:3697−714

doi: 10.1093/jxb/erp209
[49]

Schapire AL, Valpuesta V, Botella MA. 2006. TPR proteins in plant hormone signaling. Plant Signaling & Behavior 1:229−30

doi: /10.4161/psb.1.5.3491
[50]

Srivastava AK, Lu Y, Zinta G, Lang Z, Zhu JK. 2018. UTR-Dependent Control of Gene Expression in Plants. Trends Plant Sci 2018;23:248−59

[51]

Khan SA, Schaart JG, Beekwilder J, Allan AC, Tikunov YM, et al. 2012. The mQTL hotspot on linkage group 16 for phenolic compounds in apple fruits is probably the result of a leucoanthocyanidin reductase gene at that locus. BMC Research Notes 5:618

doi: 10.1186/1756-0500-5-618
[52]

Lairson LL, Henrissat B, Davies GJ, Withers SG. 2008. Glycosyltransferases: structures, functions, and mechanisms. Annual Review of Biochemistry 77:521−55

doi: 10.1146/annurev.biochem.76.061005.092322
[53]

Jugdé H, Nguy D, Moller I, Cooney JM, Atkinson RG. 2008. Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. The FEBS Journal 275:3804−14

doi: 10.1111/j.1742-4658.2008.06526.x
[54]

Lim EK, Ashford DA, Hou B, Jackson RG, Bowles DJ. 2004. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnology and Bioengineering 87:623−31

doi: 10.1002/bit.20154
[55]

Holton TA, Cornish EC. 1995. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 7:1071−83

doi: 10.1105/tpc.7.7.1071
[56]

Given NK, Venis MA, Grierson D. 1988. Phenylalanine ammonia-lyase activity and anthocyanin synthesis in ripening strawberry fruit. Journal of Plant Physiology 133:25−30

doi: 10.1016/s0176-1617(88)80079-8
[57]

Ju Z, Liu C, Yuan Y. 1995. Activities of chalcone synthase and UDPGal: flavonoid-3-o-glycosyltransferase in relation to anthocyanin synthesis in apple. Scientia Horticulturae 63:175−85

doi: 10.1016/0304-4238(95)00807-6
[58]

Qi X, Dong Y, Liu C, Song L, Chen L, et al. 2022. The PavNAC56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium). Physiologia Plantarum 174:e13834

doi: 10.1111/ppl.13834
[59]

Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, et al. 2003. Proanthocyanidin biosynthesis in plants. purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. The Journal of Biological Chemistry 278:31647−56

doi: 10.1074/jbc.M302783200
[60]

Kumar R, Khurana A, Sharma AK. 2014. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany 65:4561−75

doi: 10.1093/jxb/eru277
[61]

Moya-León MA, Mattus-Araya E, Herrera R. 2019. Molecular events occurring during softening of strawberry fruit. Frontiers in Plant Science 10:615

doi: 10.3389/fpls.2019.00615
[62]

Kou X, Feng Y, Yuan S, Zhao X, Wu C, et al. 2021. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Molecular Biology 107:477−97

doi: 10.1007/s11103-021-01199-9
[63]

Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C. 2003. Mapping quantitative physiological traits in apple (Malus x domestica Borkh). Plant Molecular Biology 52:511−26

doi: 10.1023/a:1024886500979
[64]

Denay G, Vachon G, Dumas R, Zubieta C, Parcy F. 2017. Plant SAM-domain proteins start to reveal their roles. Trends in Plant Science 22:718−25

doi: 10.1016/j.tplants.2017.06.006
[65]

Agaoua A, Rittener V, Troadec C, Desbiez C, Bendahmane A, et al. 2022. A single substitution in Vacuolar protein sorting 4 is responsible for resistance to Watermelon mosaic virus in melon. Journal of Experimental Botany 73:4008−21

doi: 10.1093/jxb/erac135
[66]

Yamazaki M, Shimada T, Takahashi H, Tamura K, Kondo M, et al. 2008. Arabidopsis VPS35, a retromer component, is required for vacuolar protein sorting and involved in plant growth and leaf senescence. Plant and Cell Physiology 49:142−56

doi: 10.1093/pcp/pcn006
[67]

Costa F, Peace CP, Stella S, Serra S, Musacchi S, et al. 2010. QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus×domestica Borkh.). Journal of Experimental Botany 61:3029−39

doi: 10.1093/jxb/erq130
[68]

Kumar S, Garrick DJ, Bink MC, Whitworth C, Chagné D, et al. 2013. Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics 14:393

doi: 10.1186/1471-2164-14-393
[69]

Longhi S, Moretto M, Viola R, Velasco R, Costa F. 2012. Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.). Journal of Experimental Botany 63:1107−21

doi: 10.1093/jxb/err326
[70]

Yang X, Wu B, Liu J, Zhang Z, Wang X, et al. 2022. A single QTL harboring multiple genetic variations leads to complicated phenotypic segregation in apple flesh firmness and crispness. Plant Cell Reports 41:2379−91

doi: 10.1007/s00299-022-02929-z
[71]

Costa F. 2015. MetaQTL analysis provides a compendium of genomic loci controlling fruit quality traits in apple. Tree Genetics & Genomes 11:819

doi: 10.1007/s11295-014-0819-9
[72]

Baumgartner IO, Kellerhals M, Costa F, Dondini L, Pagliarani G, et al. 2016. Development of SNP-based assays for disease resistance and fruit quality traits in apple (Malus × domestica Borkh.) and validation in breeding pilot studies. Tree Genetics & Genomes 12:35

doi: 10.1007/s11295-016-0994-y
[73]

Migicovsky Z, Douglas GM, Myles S. 2022. Genotyping-by-sequencing of Canada's apple biodiversity collection. Frontiers in Genetics 13:934712

doi: 10.3389/fgene.2022.934712
[74]

Chagné D, Vanderzande S, Kirk C, Profitt N, Weskett R, et al. 2019. Validation of SNP markers for fruit quality and disease resistance loci in apple (Malus ×domestica Borkh.) using the OpenArray® platform. Horticulture Research 6:30

doi: 10.1038/s41438-018-0114-2
[75]

Bernard A, Joubès J. 2013. Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Progress in Lipid Research 52:110−29

doi: 10.1016/j.plipres.2012.10.002
[76]

Samuels L, Kunst L, Jetter R. 2008. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annual Review of Plant Biology 59:683−707

doi: 10.1146/annurev.arplant.59.103006.093219
[77]

Riederer M, Schreiber L. 2001. Protecting against water loss: analysis of the barrier properties of plant cuticles. Journal of Experimental Botany 52:2023−32

doi: 10.1093/jexbot/52.363.2023
[78]

Chu W, Gao H, Chen H, Fang X, Zheng Y. 2018. Effects of cuticular wax on the postharvest quality of blueberry fruit. Food Chemistry 239:68−74

doi: 10.1016/j.foodchem.2017.06.024
[79]

Chai Y, Li A, Chit Wai S, Song C, Zhao Y, et al. 2020. Cuticular wax composition changes of 10 apple cultivars during postharvest storage. Food Chemistry 324:126903

doi: 10.1016/j.foodchem.2020.126903
[80]

Amyotte B, Bowen AJ, Banks T, Rajcan I, Somers DJ. 2017. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study. PLoS One 12:e0171710

doi: 10.1371/journal.pone.0171710