[1]

Antony E, Taybi T, Courbot M, Mugford ST, Smith JAC, et al. 2008. Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple). Journal of Experimental Botany 59:1895−908

doi: 10.1093/jxb/ern077
[2]

Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells Journal of Experimental Botany 64:1451−69

doi: 10.1093/jxb/ert035
[3]

Martinoia E. 2018. Vacuolar transporters - companions on a longtime journey. Plant Physiology 176:1384−407

doi: 10.1104/pp.17.01481
[4]

Tan X, Li K, Wang Z, Zhu K, Tan X, et al. 2019. A review of plant vacuoles: formation, located proteins, and functions. Plants 8:327

doi: 10.3390/plants8090327
[5]

Brillada C, Rojas-Pierce M. 2017. Vacuolar trafficking and biogenesis: a maturation in the field. Current Opinion in Plant Biology 40:77−81

doi: 10.1016/j.pbi.2017.08.005
[6]

Halliwell B. 1981. The Biochemistry of plants, a comprehensive treatise. FEBS Letters 128−69

doi: 10.1016/0014-5793(81)81107-6
[7]

Otegui MS, Capp R, Staehelin LA. 2002. Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. The Plant Cell 14:1311−27

doi: 10.1105/tpc.010486
[8]

Marty F. 1999. Plant vacuoles. The Plant Cell 11:587−99

doi: 10.1105/tpc.11.4.587
[9]

Paris N, Stanley CM, Jones RL, Rogers JC. 1996. Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563−72

doi: 10.1016/S0092-8674(00)81256-8
[10]

Zouhar J, Rojo E. 2009. Plant vacuoles: where did they come from and where are they heading? Current Opinion in Plant Biology 12:677−84

doi: 10.1016/j.pbi.2009.08.004
[11]

Wink M. 1993. The plant vacuole: a multifunctional compartment. Journal of Experimental Botany 44:231−46

[12]

Boller T, Wiemken A. 1987. Dynamics of lysosomal functions in plant vacuoles. In Plant Vacuoles, ed. Marin B. NATO Science Series A. vol 134. New York: Springer. pp. 361–68. http://doi.org/10.1007/978-1-4684-5341-6_47

[13]

Srivastava AK, Penna S, Nguyen DV, Tran LSP. 2016. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Critical Reviews in Biotechnology 36:389−98

doi: 10.3109/07388551.2014.973367
[14]

Shitan N, Yazaki K. 2013. New insights into the transport mechanisms in plant vacuoles. International Review of Cell and Molecular Biology 305:383−433

doi: 10.1016/B978-0-12-407695-2.00009-3
[15]

Futai M, Sun-Wada GH, Wada Y, Matsumoto N, Nakanishi-Matsui M. 2019. Vacuolar-type ATPase: a proton pump to lysosomal trafficking. Proceedings of the Japan Academy Series B, Physical and Biological Sciences 95:261−77

doi: 10.2183/pjab.95.018
[16]

Yoshida K, Kawachi M, Mori M, Maeshima M, Kondo M, et al. 2005. The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. heavenly blue. Plant and Cell Physiology 46:407−15

doi: 10.1093/pcp/pci057
[17]

Martinoia E, Maeshima M, Neuhaus HE. 2007. Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany 58:83−102

doi: 10.1093/jxb/erl183
[18]

Wen S, Neuhaus HE, Cheng J, Bie Z. 2022. Contributions of sugar transporters to crop yield and fruit quality. Journal of Experimental Botany 73:2275−89

doi: 10.1093/jxb/erac043
[19]

Schneider S, Hulpke S, Schulz A, Yaron I, Höll J, et al. 2012. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters. Plant Biology 14:325−36

doi: 10.1111/j.1438-8677.2011.00506.x
[20]

Klemens PAW, Patzke K, Deitmer J, Spinner L, Le Hir R, et al. 2013. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiology 163:1338−52

doi: 10.1104/pp.113.224972
[21]

Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, et al. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology 25:53−62

doi: 10.1016/j.pbi.2015.04.005
[22]

Aluri S, Büttner M. 2007. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proceedings of the National Academy of Sciences of the United States of America 104:2537−42

doi: 10.1073/pnas.0610278104
[23]

Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, et al. 2010. Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiology 154:665−77

doi: 10.1104/pp.110.162040
[24]

Bitterlich M, Krügel U, Boldt-Burisch K, Franken P, Kühn C. 2014. The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. The Plant Journal 78:877−89

doi: 10.1111/tpj.12515
[25]

Chincinska I, Gier K, Krügel U, Liesche J, He H, et al. 2013. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Frontiers in Plant Science 4:26

doi: 10.3389/fpls.2013.00026
[26]

Nieberl P, Ehrl C, Pommerrenig B, Graus D, Marten I, et al. 2017. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves. Plant Biology 19:315−26

doi: 10.1111/plb.12546
[27]

Zanon L, Falchi R, Hackel A, Kühn C, Vizzotto G. 2015. Expression of peach sucrose transporters in heterologous systems points out their different physiological role. Plant Science 238:262−72

doi: 10.1016/j.plantsci.2015.06.014
[28]

Peng Q, Cai Y, Lai E, Nakamura M, Liao L, et al. 2020. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC Plant Biology 20:191

doi: 10.1186/s12870-020-02406-3
[29]

Zheng Q, Tang Z, Xu Q, Deng X. 2014. Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis). Plant Cell, Tissue and Organ Culture (PCTOC) 119:609−24

doi: 10.1007/s11240-014-0560-y
[30]

Jia H, Wang Y, Sun M, Li B, Han Y, et al. 2013. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytologist 198:453−65

doi: 10.1111/nph.12176
[31]

Zhu L, Li B, Wu L, Li H, Wang Z, et al. 2021. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato. Proceedings of the National Academy of Sciences of the United States of America 118:e2022788118

doi: 10.1073/pnas.202278811
[32]

Ren Y, Li M, Guo S, Sun H, Zhao J, et al. 2021. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. The Plant Cell 33:1554−73

doi: 10.1093/plcell/koab055
[33]

Lu B, Wen S, Zhu P, Cao H, Zhou Y, et al. 2020. Overexpression of melon tonoplast sugar transporter CmTST1 improved root growth under high sugar content. International Journal of Molecular Sciences 21:3524

doi: 10.3390/ijms21103524
[34]

Cheng R, Zhang H, Cheng Y, Wang Y, Wang G, et al. 2017. In silico and expression analysis of the tonoplast monosaccharide transporter (TMT) gene family in Pyrus bretschneideri. The Journal of Horticultural Science and Biotechnology 93:366−76

doi: 10.1080/14620316.2017.1373603
[35]

Cheng R, Cheng Y, Lü J, Chen J, Wang Y, et al. 2018. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit. Physiologia Plantarum 164:307−19

doi: 10.1111/ppl.12742
[36]

Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, et al. 2011. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. The Plant Journal 68:129−36

doi: 10.1111/j.1365-313X.2011.04672.x
[37]

Ren Y, Guo S, Zhang J, He H, Sun H, et al. 2018. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiology 176:836−50

doi: 10.1104/pp.17.01290
[38]

Cheng J, Wen S, Xiao S, Lu B, Ma M, et al. 2018. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. Journal of Experimental Botany 69:511−23

doi: 10.1093/jxb/erx440
[39]

Peng Q, Wang L, Ogutu C, Liu J, Liu L, et al. 2020. Functional analysis reveals the regulatory role of PpTST1 encoding tonoplast sugar transporter in sugar accumulation of peach fruit. International Journal of Molecular Sciences 21:1112

doi: 10.3390/ijms21031112
[40]

Jung B, Ludewig F, Schulz A, Meißner G, Wöstefeld N, et al. 2015. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nature Plants 1:14001

doi: 10.1038/nplants.2014.1
[41]

Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, et al. 2014. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant and Cell Physiology 55:1123−41

doi: 10.1093/pcp/pcu052
[42]

Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, et al. 2010. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC Plant Biology 10:245

doi: 10.1186/1471-2229-10-245
[43]

Schneider S, Beyhl D, Hedrich R, Sauer N. 2008. Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1, a novel tonoplast-localized transporter for myo-inositol. The Plant Cell 20:1073−87

doi: 10.1105/tpc.107.055632
[44]

Klemens PAW, Patzke K, Trentmann O, Poschet G, Büttner M, et al. 2013. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination. New Phytologist 202:188−97

doi: 10.1111/nph.12642
[45]

Ko HY, Ho LH, Neuhaus HE, Guo WJ. 2021. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Plant Physiology 187:2230−45

doi: 10.1093/plphys/kiab290
[46]

Wang L, Yao L, Hao X, Li N, Qian W, et al. 2018. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Molecular Biology 96:577−92

doi: 10.1007/s11103-018-0716-y
[47]

Huang X, Wang C, Zhao Y, Sun C, Hu D. 2021. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Horticulture Research 8:227

doi: 10.1038/s41438-021-00702-z
[48]

Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, et al. 2011. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. The Plant Journal 67:247−57

doi: 10.1111/j.1365-313X.2011.04587.x
[49]

Carter C, Pan S, Zouhar J, Avila EL, Girke T, et al. 2004. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. The Plant Cell 16:3285−303

doi: 10.1105/tpc.104.027078
[50]

Liu R, Li B, Qin G, Zhang Z, Tian S. 2017. Identification and functional characterization of a tonoplast dicarboxylate transporter in tomato (Solanum lycopersicum). Frontiers in Plant Science 8:186

doi: 10.3389/fpls.2017.00186
[51]

Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, et al. 2004. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37:645−53

doi: 10.1111/j.1365-313X.2003.01991.x
[52]

Kovermann P, Meyer S, Hörtensteiner S, Picco C, Scholz-Starke J, et al. 2007. The Arabidopsis vacuolar malate channel is a member of the ALMT family. The Plant Journal 52:1169−80

doi: 10.1111/j.1365-313X.2007.03367.x
[53]

De Angeli A, Zhang J, Meyer S, Martinoia E. 2013. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nature Communications 4:1804

doi: 10.1038/ncomms2815
[54]

Ma B, Liao L, Zheng H, Chen J, Wu B, et al. 2015. Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple. The Plant Genome 8:plantgenome2015.03.0016

doi: 10.3835/plantgenome2015.03.0016
[55]

Ma B, Liao L, Fang T, Peng Q, Ogutu C, et al. 2019. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple. Plant Biotechnology Journal 17:674−86

doi: 10.1111/pbi.13007
[56]

De Angeli A, Baetz U, Francisco R, Zhang J, Chaves MM, et al. 2013. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta 238:283−91

doi: 10.1007/s00425-013-1888-y
[57]

Sasaki T, Tsuchiya Y, Ariyoshi M, Nakano R, Ushijima K, et al. 2016. Two members of the aluminum-activated malate transporter family, SlALMT4 and SlALMT5, are expressed during fruit development, and the overexpression of SlALMT5 alters organic acid contents in seeds in tomato (Solanum lycopersicum). Plant and Cell Physiology 57:2367−79

doi: 10.1093/pcp/pcw157
[58]

Ye J, Wang X, Hu T, Zhang F, Wang B, et al. 2017. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell 29:2249−68

doi: 10.1105/tpc.17.00211
[59]

Li C, Dougherty L, Coluccio AE, Meng D, El-Sharkawy I, et al. 2020. Apple ALMT9 Requires a Conserved C-Terminal Domain for Malate Transport Underlying Fruit Acidity. Plant Physiology 182:992−1006

doi: 10.1104/pp.19.01300
[60]

Brune A, Gonzalez P, Goren R, Zehavi U, Echeverria E. 1998. Citrate uptake into tonoplast vesicles from acid lime (Citrus aurantifolia) juice cells. The Journal of Membrane Biology 166:197−203

doi: 10.1007/s002329900461
[61]

Hurth MA, Suh SJ, Kretzschmar T, Geis T, Bregante M, et al. 2005. Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiology 137:901−10

doi: 10.1104/pp.104.058453
[62]

Shimada T, Nakano R, Shulaev V, Sadka A, Blumwald E. 2006. Vacuolar citrate/H+ symporter of citrus juice cells. Planta 224:472−80

doi: 10.1007/s00425-006-0223-2
[63]

Lin Q, Li S, Dong W, Feng C, Yin X, et al. 2015. Involvement of CitCHX and CitDIC in developmental-related and postharvest-hot-air driven citrate degradation in citrus fruits. PLoS One 10:e0119410

doi: 10.1371/journal.pone.0119410
[64]

Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, et al. 2014. The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Communications 5:4026

doi: 10.1038/ncomms5026
[65]

Maeshima M. 2000. Vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta 1465:37−51

doi: 10.1016/S0005-2736(00)00130-9
[66]

Sze H, Li X, Palmgren MG. 1999. Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. The Plant Cell 11:677−90

doi: 10.1105/tpc.11.4.677
[67]

Rea PA, Sanders D. 1987. Tonoplast energization: two H+ pumps, one membrane. Physiologia Plantarum 71:131−41

doi: 10.1111/j.1399-3054.1987.tb04630.x
[68]

Kühlbrandt W. 2004. Biology, structure and mechanism of P-type ATPases. Nature Reviews Molecular Cell Biology 5:282−95

doi: 10.1038/nrm1354
[69]

Li S, Yin X, Xie X, Allan AC, Ge H, et al. 2016. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Scientific Reports 6:20151

doi: 10.1038/srep20151
[70]

Hu D, Li Y, Zhang Q, Li M, Sun C, et al. 2017. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple. The Plant Journal 91:443−54

doi: 10.1111/tpj.13579
[71]

Amemiya T, Kanayama Y, Yamaki S, Yamada K, Shiratake K. 2006. Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation. Planta 223:1272−80

doi: 10.1007/s00425-005-0176-x
[72]

Pedersen CNS, Axelsen KB, Harper JF, Palmgren MG. 2012. Evolution of plant p-type ATPases. Frontiers in Plant Science 3:31

doi: 10.3389/fpls.2012.00031
[73]

Axelsen KB, Palmgren MG. 1998. Evolution of substrate specificities in the P-type ATPase superfamily. Journal of Molecular Evolution 46:84−101

doi: 10.1007/PL00006286
[74]

Li Y, Provenzano S, Bliek M, Spelt C, Appelhagen I, et al. 2016. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification. New Phytologist 211:1092−107

doi: 10.1111/nph.14008
[75]

Verweij W, Spelt C, Di Sansebastiano GP, Vermeer J, Reale L, et al. 2008. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nature Cell Biology 10:1456−62

doi: 10.1038/ncb1805
[76]

Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, et al. 2014. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Reports 6:32−43

doi: 10.1016/j.celrep.2013.12.009
[77]

Strazzer P, Spelt CE, Li S, Bliek M, Federici CT, et al. 2019. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nature Communications 10:744

doi: 10.1038/s41467-019-08516-3
[78]

Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, et al. 2006. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiology 141:196−207

doi: 10.1104/pp.106.079533
[79]

Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O. 2012. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. The Plant Journal 69:529−41

doi: 10.1111/j.1365-313X.2011.04812.x
[80]

Schmidt UG, Endler A, Schelbert S, Brunner A, Schnell M, et al. 2007. Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiology 145:216−29

doi: 10.1104/pp.107.096917
[81]

Kuang L, Chen S, Guo Y, Ma H. 2019. Quantitative proteome analysis reveals changes in the protein landscape during grape berry development with a focus on vacuolar transport proteins. Frontiers in Plant Science 10:641

doi: 10.3389/fpls.2019.00641
[82]

Kuang L, Chen S, Guo Y, Scheuring D, Flaishman MA, et al. 2022. Proteome analysis of vacuoles isolated from fig (Ficus carica L.) flesh during fruit development. Plant and Cell Physiology 63:785−801

doi: 10.1093/pcp/pcac039
[83]

Cools M, Rompf M, Mayer A, André B. 2019. Measuring the activity of plasma membrane and vacuolar transporters in yeast. In Yeast Systems Biology: Methods and Protocols, eds. Oliver SG, Castrillo JI. New York: Springer. pp. 247−61. https://doi.org/10.1007/978-1-4939-9736-7_15

[84]

Wang J, Gu K, Zhang Q, Yu J, Wang C, et al. 2023. Ethylene inhibits malate accumulation in apple by transcriptional repression of aluminum-activated malate transporter 9 via the WRKY31-ERF72 network. New Phytologist

doi: 10.1111/nph.18795
[85]

Zhang C, Geng Y, Liu H, Wu M, Bi J, et al. 2023. Low-acidity ALUMINUM-DEPENDENT MALATE TRANSPORTER4 genotype determines malate content in cultivated jujube. Plant Physiology 191:414−27

doi: 10.1093/plphys/kiac491
[86]

Hu D, Sun C, Ma Q, You C, Cheng L, et al. 2016. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology 170:1315−30

doi: 10.1104/pp.15.01333
[87]

Zhou A, Ma H, Feng S, Gong S, Wang J. 2018. DsSWEET17, a tonoplast-localized sugar transporter from Dianthus spiculifolius, affects sugar metabolism and confers multiple stress tolerance in Arabidopsis. International Journal of Molecular Sciences 19:1564

doi: 10.3390/ijms19061564
[88]

Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, et al. 2006. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. The Plant Cell 18:3476−90

doi: 10.1105/tpc.106.047290
[89]

Çakİr B, Gİachİno RRA. 2012. VvTMT2 encodes a putative tonoplast monosaccharide transporter expressed during grape berry (Vitis vinifera cv. Sultanine) ripening. Plant Omics 5:576−83

[90]

Li B, Zhu L, Jin Y, Peng Y, Feng Z, et al. 2022. Effects of two apple tonoplast sugar transporters, MdTST1 and MdTST2, on the accumulation of sugar. Scientia Horticulturae 293:110719

doi: 10.1016/j.scienta.2021.110719
[91]

Wang Q, Cao K, Cheng L, Li Y, Guo J, et al. 2022. Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach. Horticulture Research 9:uhac026

doi: 10.1093/hr/uhac026
[92]

Liu T, Kawochar MA, Liu S, Cheng Y, Begum S, et al. 2022. Suppression of the tonoplast sugar transporter, StTST3.1, affects transitory starch turnover and plant growth in potato. The Plant Journal 113:342−56

doi: 10.1111/tpj.16050
[93]

Kawochar MA, Cheng Y, Begum S, Wang E, Zhou T, et al. 2022. Suppression of the tonoplast sugar transporter StTST3.2 improves quality of potato chips. Journal of Plant Physiology 269:153603

doi: 10.1016/j.jplph.2021.153603
[94]

Rashid A, Ruan H, Wang Y. 2021. The gene FvTST1 from strawberry modulates endogenous sugars enhancing plant growth and fruit ripening. Frontiers in Plant Science 12:774582

doi: 10.3389/fpls.2021.774582
[95]

Xu H, Zou Q, Yang G, Jiang S, Fang H, et al. 2020. MdMYB6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. Horticulture Research 7:72

doi: 10.1038/s41438-020-0294-4
[96]

Yao Y, Dong Q, You C, Zhai H, Hao Y. 2011. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na+, malate and soluble sugar accumulation. Plant Physiology and Biochemistry 49:1201−8

doi: 10.1016/j.plaphy.2011.05.012