[1]

Dellaporta SL, Calderon-Urrea A. 1993. Sex determination in flowering plants. The Plant Cell 5:1241−51

doi: 10.1105/tpc.5.10.1241
[2]

Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31−37

doi: 10.1038/353031a0
[3]

Weigel D, Meyerowitz EM. 1994. The ABCs of floral homeotic genes. Cell 78:203−09

doi: 10.1016/0092-8674(94)90291-7
[4]

Causier B, Schwarz-Sommer Z, Davies B. 2010. Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology 21:73−79

doi: 10.1016/j.semcdb.2009.10.005
[5]

Cheng Z, Ge W, Li L, Hou D, Ma Y, et al. 2017. Analysis of MADS-box gene family reveals conservation in floral organ ABCDE model of moso bamboo (Phyllostachys edulis). Frontiers in Plant Science 8:656

doi: 10.3389/fpls.2017.00656
[6]

Liu J, Fu X, Dong Y, Lu J, Ren M, et al. 2018. MIKCC-type MADS-box genes in Rosa chinensis: the remarkable expansion of ABCDE model genes and their roles in floral organogenesis. Horticuture Research 5:25

doi: 10.1038/s41438-018-0031-4
[7]

Shore P, Sharrocks AD. 1995. The MADS-box family of transcription factors. European Journal of Biochemistry 229:1−13

[8]

Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, et al. 1996. Diversification of C-function activity in maize flower development. Science 274:1537−40

doi: 10.1126/science.274.5292.1537
[9]

Yellina AL, Orashakova S, Lange S, Erdmann R, Leebens-Mack J, et al. 2010. Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica). EvoDevo 1:13

doi: 10.1186/2041-9139-1-13
[10]

Lu HW, Klocko AL, Brunner AM, Ma C, Magnuson AC, et al. 2019. RNA interference suppression of AGAMOUS and SEEDSTICK alters floral organ identity and impairs floral organ determinacy, ovule differentiation, and seed-hair development in Populus. New Phytologist 222:923−37

doi: 10.1111/nph.15648
[11]

Liu H, Li J, Gong P, He C. 2023. The origin and evolution of carpels and fruits from an evo-devo perspective. Journal of Integrative Plant Biology 65:283−98

doi: 10.1111/jipb.13351
[12]

Fourquin C, Vinauger-Douard M, Fogliani B, Dumas C, Scutt CP. 2005. Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proceedings of the National Academy of Sciences of the United States of America 102:4649−54

doi: 10.1073/pnas.0409577102
[13]

Morel P, Heijmans K, Ament K, Chopy M, Trehin C, et al. 2018. The floral C-lineage genes trigger nectary development in Petunia and Arabidopsis. The Plant Cell 30:2020−37

doi: 10.1105/tpc.18.00425
[14]

Gong P, Song C, Liu H, Li P, Zhang M, et al. 2021. Physalis floridana CRABS CLAW mediates neofunctionalization of GLOBOSA genes in carpel development. Journal of Experimental Botany 72:6882−903

doi: 10.1093/jxb/erab309
[15]

Bowman JL, Smyth DR, Meyerowitz EM. 1989. Genes directing flower development in Arabidopsis. The Plant Cell 1:37−52

doi: 10.1105/tpc.1.1.37
[16]

Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, et al. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35−39

doi: 10.1038/346035a0
[17]

Davies B, Motte P, Keck E, Saedler H, Sommer H, et al. 1999. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. The EMBO Journal 18:4023−34

doi: 10.1093/emboj/18.14.4023
[18]

Kapoor M, Tsuda S, Tanaka Y, Mayama T, Okuyama Y, et al. 2002. Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function. The Plant Journal 32:115−27

doi: 10.1046/j.1365-313X.2002.01402.x
[19]

Hands P, Vosnakis N, Betts D, Irish VF, Drea S. 2011. Alternate transcripts of a floral developmental regulator have both distinct and redundant functions in opium poppy. Annals of Botany 107:1557−66

doi: 10.1093/aob/mcr045
[20]

Nakatsuka T, Saito M, Yamada E, Fujita K, Yamagishi N, et al. 2015. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian. BMC Plant Biology 15:e182

doi: 10.1186/s12870-015-0569-3
[21]

Klocko AL, Borejsza-Wysocka E, Brunner AM, Shevchenko O, Aldwinckle H, et al. 2016. Transgenic suppression of AGAMOUS genes in apple reduces fertility and increases floral attractiveness. PLoS ONE 11:e0159421

doi: 10.1371/journal.pone.0159421
[22]

Eshed Y, Baum SF, Bowman JL. 1999. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99:199−209

doi: 10.1016/S0092-8674(00)81651-7
[23]

Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, et al. 2004. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. The Plant Cell 16:500−09

doi: 10.1105/tpc.018044
[24]

Sugiyama SH, Yasui Y, Ohmori S, Tanaka W, Hirano HY. 2019. Rice flower development revisited: regulation of carpel specification and flower meristem determinacy. Plant and Cell Physiology 60:1284−95

doi: 10.1093/pcp/pcz020
[25]

Bowman JL, Smyth DR. 1999. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387−96

doi: 10.1242/dev.126.11.2387
[26]

Lee JY, Baum SF, Alvarez J, Patel A, Chitwood DH, et al. 2005. Activation of CRABS CLAW in the nectaries and carpels of Arabidopsis. The Plant Cell 17:25−36

doi: 10.1105/tpc.104.026666
[27]

Orashakova S, Lange M, Lange S, Wege S, Becker A. 2009. The CRABS CLAW ortholog from California poppy (Eschscholzia californica, Papaveraceae), EcCRC, is involved in floral meristem termination, gynoecium differentiation and ovule initiation. The Plant Journal 58:682−93

doi: 10.1111/j.1365-313X.2009.03807.x
[28]

Alvarez J, Smyth DR. 1999. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 126:2377−86

doi: 10.1242/dev.126.11.2377
[29]

Gómez-Mena C, de Folter S, Costa MMR, Angenent GC, Sablowski R. 2005. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132:429−38

doi: 10.1242/dev.01600
[30]

Li X, Yang Y, Zheng W, Hou J. 2002. On Flower-bud Induction in Fruit Trees. Chinese Bulletin of Botany 19:385−95

doi: 10.3969/j.issn.1674-3466.2002.04.001
[31]

Ma Y, Dai S. 2004. Flower bud differentiation mechanism of anthophyta. Molecular Plant Breeding 1:539−45

doi: 10.3969/j.issn.1672-416X.2003.04.014
[32]

Li J, Dong M, Shang F. 2007. Study on the Flower Bud Differentiation of Osmanthus fragrans 'Dangui' and O. fragrans 'Ziyingui'. Chinese Bulletin of Botany 24:620−23

doi: 10.3969/j.issn.1674-3466.2007.05.009
[33]

Wodehouse RP. 1935. Pollen grains. pp. xv + 574. New York: McGraw-Hill Book Company. 323−40 pp.

[34]

Walker JW. 1976. Evolutionary significance of the exine in the pollen of primitive angiosperms. In The Evolutionary Significance of Exine, eds. Ferguson IK, Muller J. London: Academic Press. 251−308 pp.

[35]

Vernet P, Lepercq P, Billiard S, Bourceaux A, Lepart J, et al. 2016. Evidence for the long-term maintenance of a rare self-incompatibility system in Oleaceae. New Phytologist 210:1408−17

doi: 10.1111/nph.13872
[36]

Charlesworth D. 1984. Androdioecy and the evolution of dioecy. Biological Journal of the Linnean Society 22:333−48

doi: 10.1111/j.1095-8312.1984.tb01683.x
[37]

Wallander E. 2008. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Systematics and Evolution 273:25−49

doi: 10.1007/s00606-008-0005-3
[38]

Ross MD, Weir BS. 1976. Maintenences of males and females in hermaphrodite populations and the evolution of dioecy. Evolution 30:425−41

doi: 10.2307/2407568
[39]

Lloyd DG. 1975. The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45:325−39

doi: 10.1007/BF01508307
[40]

Ross MD. 1982. Five evolutionary pathways to subdioecy. The American Naturalist 119:297−318

doi: 10.1086/283911
[41]

Xu L, Wang J, Song L, Wang L. 2009. Preliminary study on the functions of AGAMOUS homologous genes in Pisum sativum (in Chinese). Chinese Science Bulletin 54:3207−12

doi: 10.1360/972009-724
[42]

Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, et al. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766−70

doi: 10.1038/35008089
[43]

Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85−88

doi: 10.1038/nature01741
[44]

Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, et al. 2003. MADS-box protein complexes control carpel and ovule development in Arabidopsis. The Plant Cell 15:2603−11

doi: 10.1105/tpc.015123
[45]

Mejía N, Soto B, Guerrero M, Casanueva X, Houel C, et al. 2011. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biology 11:57

doi: 10.1186/1471-2229-11-57
[46]

Ocarez N, Mejía N. 2016. Suppression of the D-class MADS-box AGL 11 gene triggers seedlessness in fleshy fruits. Plant Cell Reports 35:239−54

doi: 10.1007/s00299-015-1882-x
[47]

Zhang S, Tan FQ, Chung CH, Slavkovic F, Devani RS, et al. 2022. The control of carpel determinacy pathway leads to sex determinationin cucurbits. Science 378:543−49

doi: 10.1126/science.add4250
[48]

Lenhard M, Bohnert A, Jürgens G, Laux T. 2001. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805−14

doi: 10.1016/S0092-8674(01)00390-7
[49]

Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, et al. 2001. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793−803

doi: 10.1016/S0092-8674(01)00384-1
[50]

Prunet N, Yang W, Das P, Meyerowitz EM, Jack TP. 2017. SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis thaliana flowers. Proceedings of the National Academy of Sciences of the United States of America 114:7166−71

doi: 10.1073/pnas.1705977114
[51]

Xu Y, Prunet N, Gan ES, Wang Y, Stewart D, et al. 2018. SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. The EMBO Journal 37:e97499

doi: 10.15252/embj.201797499
[52]

Yamaguchi N, Huang JB, Xu YF, Tanoi K, Ito T. 2017. Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation. Nature Communications 8:1125

doi: 10.1038/s41467-017-01252-6
[53]

Castañeda L, Giménez E, Pineda B, García-Sogo B, Ortiz-Atienza A, et al. 2022. Tomato CRABS CLAW paralogues interact with chromatin remodeling factors to mediate carpel development and floral determinacy. New Phytologist 234:1059−74

doi: 10.1111/nph.18034
[54]

Li Z. 1996. Sectioning of plant tissue. pp. 183. Beijng: Peking University Press. 130−45 pp.

[55]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[56]

Han Y, Lu M, Yue S, Li K, Dong M, et al. 2022. Comparative methylomics and chromatin accessibility analysis in Osmanthus fragrans uncovers regulation of genic transcription and mechanisms of key floral scent production. Horticulture Research 9:uhac096

doi: 10.1093/hr/uhac096