[1]

Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198:16−32

doi: 10.1111/nph.12145
[2]

Raguso RA. 2008. Wake up and smell the roses: the ecology and evolution of floral scent. Annual Review of Ecology, Evolution, and Systematics 39:549−69

doi: 10.1146/annurev.ecolsys.38.091206.095601
[3]

Dudareva N, Negre F, Nagegowda DA, Orlova I. 2006. Plant volatiles: Recent advances and future perspectives. Critical Reviews in Plant Sciences 25:417−40

doi: 10.1080/07352680600899973
[4]

Vickers CE, Gershenzon J, Lerdau MT, Loreto F. 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology 5:283−91

doi: 10.1038/nchembio.158
[5]

Brown K. 2002. Something to sniff at: unbottling floral scent. Science 296:2327−29

doi: 10.1126/science.296.5577.2327
[6]

Yonekura-Sakakibara K, Saito K. 2009. Functional genomics for plant natural product biosynthesis. Natural Product Reports 26:1466−87

doi: 10.1039/b817077k
[7]

Magnard JL, Roccia A, Caissard JC, Vergne P, Sun P. 2015. Biosynthesis of monoterpene scent compounds in roses. Science 349:81−83

doi: 10.1126/science.aab0696
[8]

Han Y, Wang H, Wang X, Li K, Dong M, et al. 2019. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool. Horticulture Research 6:106

doi: 10.1038/s41438-019-0189-4
[9]

Knudsen JT, Eriksson R, Gershenzon J, Ståhl B. 2006. Diversity and distribution of floral scent. The Botanical Review 72:1

doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
[10]

Tzin V, Galili G. 2010. The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. The Arabidopsis Book 2010:e0132

doi: 10.1199/tab.0132
[11]

Verdonk JC, de Vos CHR, Verhoeven HA, Haring MA, van Tunen AJ, et al. 2003. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62:997−1008

doi: 10.1016/S0031-9422(02)00707-0
[12]

Schade F, Legge RL, Thompson JE. 2001. Fragrance volatiles of developing and senescing carnation flowers. Phytochemistry 56:703−10

doi: 10.1016/S0031-9422(00)00483-0
[13]

Arroyo-Manzanares N, García-Nicolás M, Castell A, Campillo N, Viñas P, et al. 2019. Untargeted headspace gas chromatography – Ion mobility spectrometry analysis for detection of adulterated honey. Talanta 205:120123

doi: 10.1016/j.talanta.2019.120123
[14]

Kumar Y, Khan F, Rastogi S, Shasany AK. 2018. Genome-wide detection of terpene synthase genes in holy basil (Ocimum sanctum L.). PLoS ONE 13:e0207097

doi: 10.1371/journal.pone.0207097
[15]

Zhang W, Jiang Y, Chen S, Chen F, Chen F. 2021. Concentration-dependent emission of floral scent terpenoids from diverse cultivars of Chrysanthemum morifolium and their wild relatives. Plant Science 309:110959

doi: 10.1016/j.plantsci.2021.110959
[16]

Peng A, Lin L, Zhao M. 2020. Screening of key flavonoids and monoterpenoids for xanthine oxidase inhibitory activity-oriented quality control of Chrysanthemum morifolium Ramat. 'Boju' based on spectrum-effect relationship coupled with UPLC-TOF-MS and HS-SPME-GC/MS. Food Research International 137:109448

doi: 10.1016/j.foodres.2020.109448
[17]

Zhong J, Guo Y, Shi H, Liang Y, Guo Z, et al. 2022. Volatiles mediated an eco-friendly aphid control strategy of Chrysanthemum genus. Industrial Crops and Products 180:114734

doi: 10.1016/j.indcrop.2022.114734
[18]

Dudareva N, Pichersky E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiology 122:627−34

doi: 10.1104/pp.122.3.627
[19]

Dong F, Fu X, Watanable N, Su X, Yang Z. 2016. Recent advances in the emission and functions of plant vegetative volatiles. Molecules 21:124

doi: 10.3390/molecules21020124
[20]

Buck MJ, Atchley WR. 2003. Phylogenetic analysis of plant basic helix-loop-helix proteins. Journal of Molecular Evolution 56:742−50

doi: 10.1007/s00239-002-2449-3
[21]

Tai Y, Ling C, Wang C, Wang H, Su L, et al. 2020. Analysis of terpenoid biosynthesis pathways in German chamomile (Matricaria recutita) and Roman chamomile (Chamaemelum nobile) based on co-expression networks. Genomics 112:1055−64

doi: 10.1016/j.ygeno.2019.10.023
[22]

Leonardos G, Kendall D, Barnard N. 2012. Odor threshold determinations of 53 odorant chemicals. Journal of the Air Pollution Control Association 19:91−95

doi: 10.1080/00022470.1969.10466465
[23]

Goff SA, Klee HJ. 2006. Plant volatile compounds: sensory cues for health and nutritional value? Science 311:815−19

doi: 10.1126/science.1112614