| [1] |
M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, S. Asadi, and A. Anvari-Moghaddam, "A novel operational model for interconnected microgrids participation in transactive energy market: a hybrid IGDT/stochastic approach, " IEEE Transactions on Industrial Informatics, vol. 17, no. 6, pp. 4025–4035, 2021. doi: 10.1109/tii.2020.3012446 |
| [2] |
R. Wang, Q. Sun, P. Tu, J. Xiao, Y. Gui, and P. Wang, "Reduced-order aggregate model for large-scale converters with inhomogeneous initial conditions in DC microgrids, " IEEE Transactions on Energy Conversion, vol. 36, no. 3, pp. 2473–2484, 2021. doi: 10.1109/tec.2021.3050434 |
| [3] |
A. Kavousi-Fard, W. Su, and T. Jin, "A machine-learning-based cyber-attack detection model for wireless sensor networks in microgrids, " IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp. 650–658, 2021. doi: 10.1109/tii.2020.2964704 |
| [4] |
M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, and S. Asadi, "Two-stage robust stochastic model scheduling for transactive energy based renewable microgrids, " IEEE Transactions on Industrial Informatics, vol. 16, no. 11, pp. 6857–6867, 2020. doi: 10.1109/tii.2020.2973740 |
| [5] |
H. Lin, K. Sun, Z. H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, "Adaptive protection combined with machine learning for microgrids, " IET Generation, Transmission & Distribution, vol. 13, no. 6, pp. 770–779, 2019. doi: 10.1049/iet-gtd.2018.6230 |
| [6] |
T. Pippia, J. Sijs, and B. De Schutter, "A single-level rule-based model predictive control approach for energy management of grid-connected microgrids, " IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2364–2376, 2020. doi: 10.1109/tcst.2019.2945023 |
| [7] |
M. M. Mardani, M. H. Khooban, A. Masoudian, and T. Dragičević, "Model predictive control of DC–DC converters to mitigate the effects of pulsed power loads in naval DC microgrids, " IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5676–5685, 2019. doi: 10.1109/tie.2018.2877191 |
| [8] |
Y. Zhao, Z. Lin, Y. Ding, Y. Liu, L. Sun, and Y. Yan, "A model predictive control based generator start-up optimization strategy for restoration with microgrids as black-start resources, " IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7189–7203, 2018. doi: 10.1109/tpwrs.2018.2849265 |
| [9] |
K. Utkarsh, D. Srinivasan, A. Trivedi, W. Zhang, and T. Reindl, "Distributed model-predictive real-time optimal operation of a network of smart microgrids, " IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2833–2845, 2019. doi: 10.1109/tsg.2018.2810897 |
| [10] |
Z. Shuai, Y. Peng, J. M. Guerrero, Y. Li, and Z. J. Shen, "Transient response analysis of inverter-based microgrids under unbalanced conditions using a dynamic phasor model, " IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2868–2879, 2019. doi: 10.1109/tie.2018.2844828 |
| [11] |
Y. Shan, J. Hu, M. Liu, J. Zhu, and J. M. Guerrero, "Model predictive voltage and power control of islanded PV-battery microgrids with washout-filter-based power sharing strategy, " IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1227–1238, 2020. doi: 10.1109/tpel.2019.2930182 |
| [12] |
Y. Du and F. Li, "Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning, " IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1066–1076, 2020. doi: 10.1109/tsg.2019.2930299 |
| [13] |
X. Zhang, B. Wang, U. Manandhar, H. Beng Gooi, and G. Foo, "A model predictive current controlled bidirectional three-level DC/DC converter for hybrid energy storage system in DC microgrids, " IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4025–4030, 2019. doi: 10.1109/tpel.2018.2873765 |
| [14] |
M. R. Basir Khan, J. Pasupuleti, J. Al-Fattah, and M. Tahmasebi, "Energy management system for PV-Battery microgrid based on model predictive control, " Indonesian Journal of Electrical Engineering and Computer Science, vol. 15, no. 1, pp. 20–25, 2019. doi: 10.11591/ijeecs.v15.i1.pp20-26 |
| [15] |
S. A. Alavi, K. Mehran, Y. Hao, A. Rahimian, H. Mirsaeedi, and V. Vahidinasab, "A distributed event-triggered control strategy for DC microgrids based on publish-subscribe model over industrial wireless sensor networks, " IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4323–4337, 2019. doi: 10.1109/tsg.2018.2856893 |
| [16] |
W. Ananduta, J. M. Maestre, C. Ocampo‐Martinez, and H. Ishii, "Resilient distributed model predictive control for energy management of interconnected microgrids, " Optimal Control Applications and Methods, vol. 41, no. 1, pp. 146–169, 2020. doi: 10.1002/oca.2534 |
| [17] |
T. T. Nguyen, T. T. Nguyen, M. Q. Duong, and A. T. Doan, "Optimal operation of transmission power networks by using improved stochastic fractal search algorithm, " Neural Computing & Applications, vol. 32, no. 13, pp. 9129–9164, 2020. doi: 10.1007/s00521-019-04425-0 |
| [18] |
Y. Li, R. Wang, and Z. Yang, "Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting, " IEEE Transactions on Sustainable Energy, vol. 13, no. 1, pp. 159–169, 2022. doi: 10.1109/tste.2021.3105529 |
| [19] |
P. P. Vergara, J. M. Rey, J. C. López et al., "A generalized model for the optimal operation of microgrids in grid-connected and islanded droop-based mode, " IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5032–5045, 2019. doi: 10.1109/tsg.2018.2873411 |
| [20] |
J. Liu, X. Cao, Z. Xu, X. Guan, X. Dong, and C. Wang, "Resilient operation of multi-energy industrial park based on integrated hydrogen-electricity-heat microgrids, " International Journal of Hydrogen Energy, vol. 46, no. 57, pp. 28855–28869, 2021. doi: 10.1016/j.ijhydene.2020.11.229 |
| [21] |
B. Alghamdi and C. A. Cañizares, "Frequency regulation in isolated microgrids through optimal droop gain and voltage control, " IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 988–998, 2021. doi: 10.1109/tsg.2020.3028472 |
| [22] |
I. Kozlovskiy, Y. Shkodyr, and Y. Gyrba, "Random fractal search algorithm for multi-objective optimization problems, " Journal of Applied Mathematics and Computational Mechanics, vol. 20, no. 3, pp. 31–42, 2021. |
| [23] |
I. A. Khokhar, M. Zahoor, and I. Ali, "A novel hybridization of differential evolution and random fractal search algorithm for global optimization, " Journal of Computational Science, vol. 44, pp. 1–14, 2020. |
| [24] |
H. T. Kahraman, S. Aras, and E. Gedikli, "Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms, " Knowledge-Based Systems, vol. 190, Article ID 105169, 2020. doi: 10.1016/j.knosys.2019.105169 |
| [25] |
H. T. Kahraman, M. Katı, S. Aras, and D. A. Taşci, "Development of the Natural Survivor Method (NSM) for designing an updating mechanism in metaheuristic search algorithms, " Engineering Applications of Artificial Intelligence, vol. 122, Article ID 106121, 2023. doi: 10.1016/j.engappai.2023.106121 |
| [26] |
A. W. Mohamed, A. A. Hadi, and A. K. Mohamed, "Gaining-sharing knowledge-based algorithm for solving optimization problems: a novel nature-inspired algorithm, " Int. J. Mach. Learn. & Cyber. , vol. 11, no. 7, pp. 1501–1529, 2020. doi: 10.1007/s13042-019-01053-x |
| [27] |
J. Derrac, S. García, D. Molina, and F. Herrera, "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, " Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011. doi: 10.1016/j.swevo.2011.02.002 |
| [28] |
S. Duman, H. T. Kahraman, Y. Sonmez, U. Guvenc, M. Kati, and S. Aras, "A powerful meta-heuristic search algorithm for solving global optimization and real-world solar photovoltaic parameter estimation problems, " Engineering Applications of Artificial Intelligence, vol. 111, Article ID 104763, 2022. doi: 10.1016/j.engappai.2022.104763 |
| [29] |
S. Duman, H. T. Kahraman, and M. Kati, "Economical operation of modern power grids incorporating uncertainties of renewable energy sources and load demand using the adaptive fitness-distance balance-based stochastic fractal search algorithm, " Engineering Applications of Artificial Intelligence, vol. 117, Article ID 105501, 2023. doi: 10.1016/j.engappai.2022.105501 |