[1]

Calone R, Bregaglio S, Sanoubar R, Noli E, Lambertini C, et al. 2021. Physiological adaptation to water salinity in six wild halophytes suitable for mediterranean agriculture. Plants 10:309

doi: 10.3390/plants10020309
[2]

Guan Z, Chen S, Wang Y, Chen F. 2010. Screening of salt-tolerance concentration and comparison of salt-tolerance for chrysanthemum and its related taxa. Chinese Journal of Ecology 29:467−72

[3]

Chen J, Zhao X, Zhang Y, Li Y, Luo Y, et al. 2019. Effects of drought and rehydration on the physiological responses of Artemisia halodendron. Water 11:793

doi: 10.3390/w11040793
[4]

Liu H, Wang Q, Wang J, Liu Y, Renzeng W, et al. 2022. Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics. BMC Plant Biology 22:445

doi: 10.1186/s12870-022-03830-3
[5]

Yin D, Chen S, Chen F, Guan Z, Fang W. 2009. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environmental and Experimental Botany 67:87−93

doi: 10.1016/j.envexpbot.2009.06.006
[6]

Alhaithloul HAS. 2019. Impact of combined heat and drought stress on the potential growth responses of the desert grass Artemisia sieberi alba: relation to biochemical and molecular adaptation. Plants 8:416

doi: 10.3390/plants8100416
[7]

Rebhi AEM, Lounici H, Lahrech MB, Morel JL. 2019. Response of Artemisia herba alba to hexavalent chromium pollution under arid and semi-arid conditions. International Journal of Phytoremediation 21:224−29

doi: 10.1080/15226514.2018.1524841
[8]

Zhang X, Sun X, Zhang S, Yang J, Liu F, et al. 2019. Comprehensive transcriptome analysis of grafting onto Artemisia scoparia W. to affect the aphid resistance of chrysanthemum (Chrysanthemum morifolium T.). BMC Genomics 20:776

doi: 10.1186/s12864-019-6158-3
[9]

Guetat A, Al-Ghamdi FA, Osman AK. 2017. The genus Artemisia L. in the northern region of Saudi Arabia: essential oil variability and antibacterial activities. Natural Product Research 31:598−603

doi: 10.1080/14786419.2016.1207071
[10]

Mamatova AS, Korona-Glowniak I, Skalicka-Woźniak K, Józefczyk A, et al. 2019. Phytochemical composition of wormwood (Artemisia gmelinii) extracts in respect of their antimicrobial activity. BMC Complementary and Alternative Medicine 19:288

doi: 10.1186/s12906-019-2719-x
[11]

Zhang Y, Song H, Wang X, Zhou X, Zhang K, et al. 2020. The roles of different types of trichomes in tomato resistance to cold, drought, whiteflies, and Botrytis. Agronomy 10:411

doi: 10.3390/agronomy10030411
[12]

Kārkliņa K, Lācis G, Lāce B. 2021. Differences in leaf morphological parameters of pear (Pyrus communis L.) based on their susceptibility to european pear rust caused by Gymnosporangium sabinae (Dicks.) Oerst. Plants 10:1024

doi: 10.3390/plants10051024
[13]

Tateda C, Obara K, Abe Y, Sekine R, Nekoduka S, et al. 2019. The host stomatal density determines resistance to Septoria gentianae in Japanese Gentian. Molecular Plant-Microbe Interactions 32:428−36

doi: 10.1094/MPMI-05-18-0114-R
[14]

Crowell CR, Bekauri MM, Cala AR, McMullen P, Smart LB, et al. 2020. Differential susceptibility of diverse Salix spp. to Melampsora americana and Melampsora paradoxa. Plant Disease 104:2949−57

doi: 10.1094/PDIS-04-20-0718-RE
[15]

Li J, Zhang C, Zhang Y, Gao H, Wang H, et al. 2022. An apple long-chain acyl-CoA synthase, MdLACS1, enhances biotic and abiotic stress resistance in plants. Plant Physiology and Biochemistry 189:115−25

doi: 10.1016/j.plaphy.2022.08.021
[16]

Zhang Y, Zhang C, Wang G, Wang Y, Qi C, et al. 2019. The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis. BMC Plant Biology 19:362

doi: 10.1186/s12870-019-1918-4
[17]

Zhu J, Huang K, Cheng D, Zhang C, Li R, et al. 2022. Characterization of cuticular wax in tea plant and its modification in response to low temperature. Journal of Agricultural and Food Chemistry 70:13849−61

doi: 10.1021/acs.jafc.2c05470
[18]

Lewandowska M, Keyl A, Feussner I. 2020. Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytologist 227:698−713

doi: 10.1111/nph.16571
[19]

Bourgaud F, Gravot A, Milesi S, Gontier E. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science 161:839−51

doi: 10.1016/S0168-9452(01)00490-3
[20]

Li C, Leopold AL, Sander GW, Shanks JV, Zhao L, et al. 2013. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biology 13:155

doi: 10.1186/1471-2229-13-155
[21]

Ritala A, Dong LM, Imseng N, Seppänen-Laakso T, Vasilev N, et al. 2014. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. Journal of Biotechnology 176:20−28

doi: 10.1016/j.jbiotec.2014.01.031
[22]

Stitt M, Sulpice R, Keurentjes J. 2010. Metabolic networks: how to identify key components in the regulation of metabolism and growth. Plant Physiology 152:428−44

doi: 10.1104/pp.109.150821
[23]

Xue H, Jiang Y, Zhao H, Köllner TG, Chen S, et al. 2019. Characterization of composition and antifungal properties of leaf secondary metabolites from thirteen cultivars of Chrysanthemum morifolium Ramat. Molecules 24:4202

doi: 10.3390/molecules24234202
[24]

Li H, Liu Y, Chen S, Jiang J, Song A, et al. 2020. Variation for resistance to Alternaria tenuissima and potential structural mechanism among different cultivars of Chrysanthemum morifolium. Phyton-International Journal of Experimental Botany 89:851−59

doi: 10.32604/phyton.2020.012361
[25]

He X, Jiang Y, Chen S, Chen F, Chen F. 2023. Terpenoids and their possible role in defense against a fungal pathogen Alternaria tenuissima in Chrysanthemum morifolium cultivars. Journal of Plant Growth Regulation 42:1144−57

doi: 10.1007/s00344-022-10619-z
[26]

Liu L, Chen F, Chen S, Fang W, Liu Y, et al. 2021. Dual species dynamic transcripts reveal the interaction mechanisms between Chrysanthemum morifolium and Alternaria alternata. BMC Genomics 22:523

doi: 10.1186/s12864-021-07709-9
[27]

Liu Y, Xin J, Liu L, Song A, Guan Z, et al. 2020. A temporal gene expression map of Chrysanthemum leaves infected with Alternaria alternata reveals different stages of defense mechanisms. Horticulture Research 7:23

doi: 10.1038/s41438-020-0245-0
[28]

Guan Y, He X, Wen D, Chen S, Chen F, et al. 2022. Fusarium oxysporum infection on root elicit aboveground terpene production and salicylic acid accumulation in Chrysanthemum morifolium. Plant Physiology and Biochemistry 190:11−23

doi: 10.1016/j.plaphy.2022.08.029
[29]

Merad N, Andreu V, Chaib S, de Carvalho Augusto R, Duval D, et al. 2021. Essential oils from two apiaceae species as potential agents in organic crops protection. Antibitics 10:636

doi: 10.3390/antibiotics10060636
[30]

Ruiz-Vásquez L, Ruiz Mesia L, Caballero Ceferino HD, Ruiz Mesia W, Andrés MF, et al. 2022. Antifungal and herbicidal potential of Piper essential oils from the Peruvian Amazonia. Plants 11:1793

doi: 10.3390/plants11141793
[31]

Zhu W, Zhang F, Chen S, Xu L, Wang L, et al. 2014. Intergeneric hybrids between Chrysanthemum morifolium 'Nannongxiaoli' and Artemisia vulgaris 'Variegata' show enhanced resistance against both aphids and Alternaria leaf spot. Euphytica 197:399−408

doi: 10.1007/s10681-014-1076-6
[32]

Deng Y, Chen S, Chang Q, Wang H, Chen F. 2012. The chrysanthemum × Artemisia vulgaris intergeneric hybrid has better rooting ability and higher resistance to alternaria leaf spot than its chrysanthemum parent. Scientia Horticulturae 134:185−90

doi: 10.1016/j.scienta.2011.11.012
[33]

Smith J, Saravanakumar D. 2022. Development of resistance in tomato plants grafted onto Solanum torvum against bacterial wilt disease. Journal of Plant Diseasea and Protection 129:1389−99

doi: 10.1007/s41348-022-00650-3
[34]

Paul C, Motter HZ, Walker DR. 2020. Reactions of soybean germplasm accessions to six Phakopsora pachyrhizi isolates from the United States. Plant Disease 104:1087−95

doi: 10.1094/PDIS-09-18-1704-RE
[35]

Foolad MR, Sullenberger MT, Ashrafi H. 2015. Detached-leaflet evaluation of tomato germplasm for late blight resistance and its correspondence to field and greenhouse screenings. Plant Disease 99:718−22

doi: 10.1094/PDIS-08-14-0794-RE
[36]

Abe K, Iwanami H, Kotoda N, Moriya S, Takahashi Sumiyoshi S. 2010. Evaluation of apple genotypes and Malus species for resistance to Alternaria blotch caused by Alternaria alternata apple pathotype using detached-leaf method. Plant Breeding 129:208−18

doi: 10.1111/j.1439-0523.2009.01672.x
[37]

Paczos-Grzęda E, Sowa S, Boczkowska M, Langdon T. 2019. Detached leaf assays for resistance to crown rust reveal diversity within populations of Avena sterilis. Plant Disease 103:832−40

doi: 10.1094/PDIS-06-18-1045-RE
[38]

Miller-Butler MA, Smith BJ, Babiker EM, Kreiser BR, Blythe EK. 2018. Comparison of whole plant and detached leaf screening techniques for identifying anthracnose resistance in strawberry plants. Plant Disease 102:2112−19

doi: 10.1094/PDIS-08-17-1138-RE
[39]

Patil PG, Shashidhar HE, Byregowda M, Reena GAM, Ashok TH, et al. 2017. Association of leaf micro-morphological features with serility mosaic disease resistance in pigeonpea. Journal of Environmental Biology 38:649−56

doi: 10.22438/jeb/38/4/MS-276
[40]

Kono A, Shimizu T. 2020. Leaf trichomes as an effective structure for disease resistance: the case of grapevine downy mildew. Japan Agricultural Research Quarterly 54:293−98

doi: 10.6090/jarq.54.293
[41]

Hou X, Zhang G, Han R, Wan R, Li Z, et al. 2022. Ultrastructural observations of Botrytis cinerea and physical changes in resistant and susceptible grapevines. Phytopathology 112:387−95

doi: 10.1094/PHYTO-11-20-0520-R
[42]

Rennberger G, Keinath AP, Hess M. 2017. Correlation of trichome density and length and polyphenol fluorescence with susceptibility of five cucurbits to Didymella bryoniae. Journal of Plant Diseases and Protection 124:313−18

doi: 10.1007/s41348-016-0050-z
[43]

Bradshaw M, Goolsby E, Mason C, Tobin PC. 2021. Evolution of disease severity and susceptibility in the Asteraceae to the powdery mildew Golovinomyces latisporus: major phylogenetic structure coupled with highly variable disease severity at fine scales. Plant Disease 105:268−75

doi: 10.1094/PDIS-06-20-1375-RE
[44]

Li X, Rengel Z, Chen Q. 2022. Phytomelatonin prevents bacterial invasion during nighttime. Trends in Plant Science 27:331−34

doi: 10.1016/j.tplants.2021.12.008
[45]

Luiz C, Caires NP, de Aguiar T, Blainski JML, da Silva Behs J, et al. 2022. Resistance of strawberries to Xanthomonas fragariae induced by aloe polysaccharides and essential oils nanoemulsions is associated with phenolic metabolism and stomata closure. Australasian Plant Pathology 51:305−14

doi: 10.1007/s13313-022-00856-x
[46]

Dutton C, Hõrak H, Hepworth C, Mitchell A, Ton J, et al. 2019. Bacterial infection systemically suppresses stomatal density. Plant, Cell & Environment 42:2411−21

doi: 10.1111/pce.13570
[47]

Yang H, Han S, He D, Jiang S, Cao G, et al. 2021. Resistance evaluation of walnut (Juglans spp.) against Xanthomonas arboricola and the correlation between leaf structure and resistance. Forest Pathology 51:e12659

doi: 10.1111/efp.12659
[48]

Ziv C, Zhao ZZ, Gao YG, Xia Y. 2018. Multifunctional roles of plant cuticle during plant-pathogen interactions. Frontiers in Plant Science 9:1088

doi: 10.3389/fpls.2018.01088
[49]

Tian L, Shang S, Yang Y, Si L, Li D. 2013. Relationship between the leaf structure of bitter melon and resistance to powdery mildew. Acta Botanica Boreali-Occidentalia Sinica 33:2010−15

doi: 10.7606/j.issn.1000-4025.2013.10.2010
[50]

Hammerbacher A, Coutinho TA, Gershenzon J. 2019. Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant, Cell & Environment 42:2827−43

doi: 10.1111/pce.13602
[51]

Alarcon AA, Lazazzara V, Cappellin L, Bianchedi PL, Schuhmacher R, et al. 2015. Emission of volatile sesquiterpenes and monoterpenes in grapevine genotypes following Plasmopara viticola inoculation in vitro. Journal of Mass Spectrometry 50:1013−22

doi: 10.1002/jms.3615
[52]

de Sousa DB, Da Silva GS, Guedes JAC, Serrano LAL, Martins MVV, et al. 2022. Volatile metabolomics from cashew leaves: assessment of resistance biomarkers associated with black mold (Pilgeriella anacardii Arx & Müller). Journal of the Brazilian Chemical Society 33:1423−40

doi: 10.21577/0103-5053.20220078
[53]

Ďurkovič J, Bubeníková T, Gužmerová A, Fleischer P, Kurjak D, et al. 2021. Effects of Phytophthora inoculations on photosynthetic behaviour and induced defence responses of plant volatiles in field-grown hybrid poplar tolerant to bark canker disease. Journal of Fungi 7:969

doi: 10.3390/jof7110969
[54]

Zhang Z, Lu S, Yu W, Ehsan S, Zhang Y, et al. 2022. Jasmonate increases terpene synthase expression, leading to strawberry resistance to Botrytis cinerea infection. Plant Cell Reports 41:1243−60

doi: 10.1007/s00299-022-02854-1
[55]

Šarac Z, Matejić JS, Stojanović-Radić ZZ, Veselinović JB, Džamić AM, et al. 2014. Biological activity of Pinus nigra terpenes—Evaluation of FtsZ inhibition by selected compounds as contribution to their antimicrobial activity. Computers in Biology and Medicine 54:72−78

doi: 10.1016/j.compbiomed.2014.08.022
[56]

Santos P, Busta L, Yim WC, Cahoon EB, Kosma DK. 2022. Structural diversity, biosynthesis, and function of plant falcarin-type polyacetylenic lipids. Journal of Experimental Botany 73:2889−904

doi: 10.1093/jxb/erac006
[57]

Dawid C, Dunemann F, Schwab W, Nothnagel T, Hofmann T. 2015. Bioactive C17-polyacetylenes in carrots (Daucus carota L.): current knowledge and future perspectives. Journal of Agricultural and Food Chemistry 63:9211−22

doi: 10.1021/acs.jafc.5b04357
[58]

Hou JH, Shin H, Jang KH, Park CK, Koo B, et al. 2019. Anti-acne properties of hydrophobic fraction of red ginseng (Panax ginseng C.A. Meyer) and its active components. Phytotherapy Research 33:584−90

doi: 10.1002/ptr.6243
[59]

Kobaek-Larsen M, El-Houri RB, Christensen LP, Al-Najami I, Fretté X, et al. 2017. Dietary polyacetylenes, falcarinol and falcarindiol, isolated from carrots prevents the formation of neoplastic lesions in the colon of azoxymethane-induced rats. Food & Function 8:964−74

doi: 10.1039/c7fo00110j
[60]

Medbouhi A, Merad N, Khadir A, Bendahou M, Djabou N, et al. 2018. Chemical composition and biological investigations of Eryngium triquetrum essential oil from Algeria. Chemistry & Biodiversity 15:e1700343

doi: 10.1002/cbdv.201700343