[1]

Smith DL, Gross KC. 2000. A family of at least seven β-galactosidase genes is expressed during tomato fruit development. Plant Physiology 123:1173−84

doi: 10.1104/pp.123.3.1173
[2]

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, et al. 2009. The Carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research 37:D233−D238

doi: 10.1093/nar/gkn663
[3]

Dwevedi A, Kayastha AM. 2010. Plant β-galactosidases: physiological significance and recent advances in technological applications. Journal of Plant Biochemistry and Biotechnology 19:9−20

doi: 10.1007/BF03323431
[4]

Kotake T, Dina S, Konishi T, Kaneko S, Igarashi K, et al. 2005. Molecular cloning of a β-galactosidase from radish that specifically hydrolyzes β-(1→3)- and β-(1→6)-galactosyl residues of arabinogalactan protein. Plant Physiology 138:1563−76

doi: 10.1104/pp.105.062562
[5]

Smith DL, Abbott JA, Gross KC. 2002. Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiology 129:1755−62

doi: 10.1104/pp.011025
[6]

de Alcântara PHN, Martim L, Silva CO, Dietrich SMC, Buckeridge MS. 2006. Purification of a β-galactosidase from cotyledons of Hymenaea courbaril L. (Leguminosae). Enzyme properties and biological function. Plant Physiology and Biochemistry 44:619−27

doi: 10.1016/j.plaphy.2006.10.007
[7]

Seddigh S, Darabi M. 2014. Comprehensive analysis of beta-galactosidase protein in plants based on Arabidopsis thaliana. Turkish Journal of Biology 38:140−50

doi: 10.3906/biy-1307-14
[8]

Tanthanuch W, Chantarangsee M, Maneesan J, Ketudat-Cairns J. 2008. Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.). BMC Plant Biology 8:84

doi: 10.1186/1471-2229-8-84
[9]

Fanourakis D, Nikoloudakis N, Paschalidis K, Christopoulos MV, Goumenaki E, et al. 2022. Gene expression, activity and localization of beta-galactosidases during late ripening and postharvest storage of tomato fruit. Agriculture 12:778

doi: 10.3390/agriculture12060778
[10]

Hou F, Du T, Qin Z, Xu T, Li A, et al. 2021. Genome-wide in silico identification and expression analysis of beta-galactosidase family members in sweetpotato [Ipomoea batatas (L.) Lam]. BMC Genomics 22:140

doi: 10.1186/s12864-021-07436-1
[11]

McCartney L, Ormerod AP, Gidley MJ, Knox JP. 2000. Temporal and spatial regulation of pectic (1→ 4)-β-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. The Plant Journal 22:105−13

doi: 10.1046/j.1365-313x.2000.00719.x
[12]

Sørensen SO, Pauly M, Bush M, Skjøt M, McCann MC, et al. 2000. Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-β-D-galactanase. Proceedings of the National Academy of Sciences of the United States of America 97:7639−44

doi: 10.1073/pnas.130568297
[13]

Albornos L, Martín I, Pérez P, Marcos R, Dopico B, et al. 2012. Promoter activities of genes encoding β-galactosidases from Arabidopsis a1 subfamily. Plant Physiology and Biochemistry 60:223−32

doi: 10.1016/j.plaphy.2012.08.012
[14]

Moneo-Sánchez M, Izquierdo L, Martín I, Hernández-Nistal J, Albornos L, et al. 2018. Knockout mutants of Arabidopsis thaliana β-galactosidase. Modifications in the cell wall saccharides and enzymatic activities. Biologia Plantarum 62:80−88

doi: 10.1007/s10535-017-0739-2
[15]

Mwaniki MW, Mathooko FM, Matsuzaki M, Hiwasa K, Tateishi A, et al. 2005. Expression characteristics of seven members of the β-galactosidase gene family in 'La France' pear (Pyrus communis L.) fruit during growth and their regulation by 1-methylcyclopropene during postharvest ripening. Postharvest Biology and Technology 36:253−63

doi: 10.1016/j.postharvbio.2005.02.002
[16]

Esteban R, Labrador E, Dopico B. 2005. A family of β-galactosidase cDNAs related to development of vegetative tissue in Cicer arietinum. Plant Science 168:457−66

doi: 10.1016/j.plantsci.2004.09.009
[17]

Sheridan PP, Brenchley JE. 2000. Characterization of a salt-tolerant family 42 β-galactosidase from a psychrophilic antarctic Planococcus isolate. Applied and Environmental Microbiology 66:2438−44

doi: 10.1128/AEM.66.6.2438-2444.2000
[18]

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, et al. 2005. A gene expression map of Arabidopsis thaliana development. Nature Genetics 37:501−06

doi: 10.1038/ng1543
[19]

Sudério FB, Gomes Filho E, Costa JH, Enéas Filho J. 2014. β-galactosidases from cowpea stems: properties and gene expression under conditions of salt stress. Revista Ciência Agronô mica 45:794−804

doi: 10.1590/S1806-66902014000400018
[20]

Spadoni A, Guidarelli M, Sanzani SM, Ippolito A, Mari M. 2014. Influence of hot water treatment on brown rot of peach and rapid fruit response to heat stress. Postharvest Biology and Technology 94:66−73

doi: 10.1016/j.postharvbio.2014.03.006
[21]

Liang W, Chen W, Song R, Zhang F. 2004. Advances in embryo development of longan. Subtropical Plant Science 33:65−68

[22]

Lai Z, Pan L, Chen Z. 1997. Establishment and maintenance of longan embryogenic cell lines. Journal of Fujian Agricultural University 26:160−67

[23]

Qiu X, Feit AS, Feiglin A, Xie Y, Kesten N, et al. 2021. CoBRA: containerized bioinformatics workflow for reproducible ChIP/ATAC-seq Analysis. Genomics, Proteomics & Bioinformatics 19:652−61

doi: 10.1016/j.gpb.2020.11.007
[24]

Wang F, Shang G, Wu L, Xu Z, Wang J. 2020. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Developmental Cell 54:742−757.E8

doi: 10.1016/j.devcel.2020.07.003
[25]

Sijacic P, Bajic M, McKinney EC, Meagher RB, Deal RB. 2018. Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell type-specific transcription factor networks. The Plant Journal 94:215−31

doi: 10.1111/tpj.13882
[26]

Horstman A, Bemer M, Boutilier K. 2017. A transcriptional view on somatic embryogenesis. Regeneration 4:201−16

doi: 10.1002/reg2.91
[27]

Hoffman BG, Robertson G, Zavaglia B, Beach M, Cullum R, et al. 2010. Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver. Genome Research 20:1037−51

doi: 10.1101/gr.104356.109
[28]

Calo E, Wysocka J. 2013. Modification of enhancer chromatin: what, how, and why? Molecular Cell 49:825−37

doi: 10.1016/j.molcel.2013.01.038
[29]

Chen Y, Xie D, Ma X, Xue X, Liu M, et al. 2023. Genome-wide high-throughput chromosome conformation capture analysis reveals hierarchical chromatin interactions during early somatic embryogenesis. Plant Physiology 193:555−77

doi: 10.1093/plphys/kiad348
[30]

Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, et al. 2004. Toward a systems approach to understanding plant cell walls. Science 306:2206−11

doi: 10.1126/science.1102765
[31]

Betekhtin A, Rojek M, Milewska-Hendel A, Gawecki R, Karcz J, et al. 2016. Spatial distribution of selected chemical cell wall components in the embryogenic callus of Brachypodium distachyon. PLoS ONE 11:e0167426

doi: 10.1371/journal.pone.0167426
[32]

Sala K, Malarz K, Barlow PW, Kurczyńska EU. 2017. Distribution of some pectic and arabinogalactan protein epitopes during Solanum lycopersicum (L.) adventitious root development. BMC Plant Biology 17:25

doi: 10.1186/s12870-016-0951-9
[33]

Sampedro J, Gianzo C, Iglesias N, Guitián E, Revilla G, et al. 2012. AtBGAL10 is the main xyloglucan β-galactosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects. Plant Physiology 158:1146−57

doi: 10.1104/pp.111.192195
[34]

Prakash A, Jeffryes M, Bateman A, Finn RD. 2017. The HMMER web server for protein sequence similarity search. Current Protocols in Bioinformatics 60:3.15.1−3.15.23

doi: 10.1002/cpbi.40
[35]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−49

doi: 10.1093/molbev/msy096
[36]

Wang Y, Li J, Paterson AH. 2013. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29:1458−60

doi: 10.1093/bioinformatics/btt150
[37]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[38]

Meng D, Yang Q, Dong B, Song Z, Niu L, et al. 2019. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. Plant Biotechnology Journal 17:1804−13

doi: 10.1111/pbi.13101
[39]

Yang X, Zhang X, Fu L, Min L, Liu G. 2010. Multiple shoots induction in wild cotton (Gossypium bickii) through organogenesis and the analysis of genetic homogeneity of the regenerated plants. Biologia 65:496−503

doi: 10.2478/s11756-010-0037-3
[40]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[41]

Lin Y, Min J, Lai R, Wu Z, Chen Y, et al. 2017. Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics. GigaScience 6:gix023

doi: 10.1093/gigascience/gix023
[42]

Yamaguchi-Shinozaki K, Shinozaki K. 2005. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science 10:88−94

doi: 10.1016/j.tplants.2004.12.012
[43]

Latchman DS. 1993. Transcription factors: an overview. International Journal of Experimental Pathology 74:417−22

[44]

Spitz F, Furlong EEM. 2012. Transcription factors: from enhancer binding to developmental control. Nature Reviews Genetics 13:613−26

doi: 10.1038/nrg3207
[45]

Bae S, Lesch BJ. 2020. H3K4me1 distribution predicts transcription state and poising at promoters. Frontiers in Cell and Developmental Biology 8:289

doi: 10.3389/fcell.2020.00289
[46]

Guo S, Song J, Zhang B, Jiang H, Ma R, et al. 2018. Genome-wide identification and expression analysis of beta-galactosidase family members during fruit softening of peach [Prunus persica (L.) Batsch]. Postharvest Biology and Technology 136:111−23

doi: 10.1016/j.postharvbio.2017.10.005
[47]

Othman R, Chong HL, Choo TS, Ali ZM. 2011. Three β-galactosidase cDNA clones related to fruit ripening in papaya (Carica papaya). Acta Physiologiae Plantarum 33:2301−10

doi: 10.1007/s11738-011-0770-4
[48]

Chandrasekar B, van der Hoorn RAL. 2016. Beta galactosidases in Arabidopsis and tomato-a mini review. Biochemical Society Transactions 44:150−58

doi: 10.1042/BST20150217
[49]

Hobson N, Deyholos MK. 2013. Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes. BMC Genomics 14:344

doi: 10.1186/1471-2164-14-344
[50]

Du L, Tang Z, Wu X, Chen C, Lai B. 2023. Genome-wide identification and expression analysis of β-galactosidase family members in Brassica juncea var. tumida. Molecular Plant Breeding 21:472−86

doi: 10.13271/j.mpb.021.000472
[51]

Barnes WJ, Anderson CT. 2018. Release, recycle, rebuild: cell-wall remodeling, autodegradation, and sugar salvage for new wall biosynthesis during plant development. Molecular Plant 11:31−46

doi: 10.1016/j.molp.2017.08.011
[52]

Mohnen D. 2008. Pectin structure and biosynthesis. Current Opinion in Plant Biology 11:266−77

doi: 10.1016/j.pbi.2008.03.006
[53]

Palin R, Geitmann A. 2012. The role of pectin in plant morphogenesis. Biosystems 109:397−402

doi: 10.1016/j.biosystems.2012.04.006
[54]

Van Hengel AJ, Van Kammen A, De Vries SC. 2002. A relationship between seed development, Arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiologia Plantarum 114:637−44

doi: 10.1034/j.1399-3054.2002.1140418.x
[55]

Rodríguez-Sanz H, Manzanera JA, Solís MT, Gómez-Garay A, Pintos B, et al. 2014. Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC Plant Biology 14:224

doi: 10.1186/s12870-014-0224-4
[56]

Liu ZJ, Wu S, Junwen Z. 2020. A review of MADS-box genes, the molecular regulatory genes for floral organ development in Orchidaceae. Acta Horticulturae Sinica 47:2047−62

doi: 10.16420/j.issn.0513-353x.2019-0740
[57]

Thakare D, Tang W, Hill K, Perry SE. 2008. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiology 146:1663−72

doi: 10.1104/pp.108.115832
[58]

Ban Q, Ye H, He Y, Jin M, Han S, et al. 2018. Functional characterization of persimmon β-galactosidase gene DkGAL1 in tomato reveals cell wall modification related to fruit ripening and radicle elongation. Plant Science 274:109−20

doi: 10.1016/j.plantsci.2018.05.014
[59]

Lazan H, Ng SY, Goh LY, Ali ZM. 2004. Papaya β-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant Physiology and Biochemistry 42:847−53

doi: 10.1016/j.plaphy.2004.10.007
[60]

Dean GH, Zheng H, Tewari J, Huang J, Young DS, et al. 2007. The Arabidopsis MUM2 gene encodes a β-galactosidase required for the production of seed coat mucilage with correct hydration properties. The Plant Cell 19:4007−21

doi: 10.1105/tpc.107.050609
[61]

Gantulga D, Turan Y, Bevan DR, Esen A. 2008. The Arabidopsis At1g45130 and At3g52840 genes encode beta-galactosidases with activity toward cell wall polysaccharides. Phytochemistry 69:1661−70

doi: 10.1016/j.phytochem.2008.01.023
[62]

Wei H, Brunecky R, Donohoe BS, Ding SY, Ciesielski PN, et al. 2015. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. Frontiers in Plant Science 6:315

doi: 10.3389/fpls.2015.00315
[63]

Gantulga D, Ahn YO, Zhou C, Battogtokh D, Bevan DR, et al. 2009. Comparative characterization of the Arabidopsis subfamily a1 β-galactosidases. Phytochemistry 70:1999−2009

doi: 10.1016/j.phytochem.2009.08.008
[64]

Yu L, Miao Z, Qi G, Wu J, Cai X, et al. 2014. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Molecular Plant 7:1653−69

doi: 10.1093/mp/ssu088
[65]

Du J, Anderson CT, Xiao C. 2022. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. Nature Plants 8:332−40

doi: 10.1038/s41477-022-01120-2
[66]

Du J, Kirui A, Huang S, Wang L, Barnes WJ, et al. 2020. Mutations in the pectin methyltransferase QUASIMODO2 influence cellulose biosynthesis and wall integrity in Arabidopsis. The Plant Cell 32:3576−97

doi: 10.1105/tpc.20.00252
[67]

Shekhawat K, Almeida-Trapp M, García-Ramírez GX, Hirt H. 2022. Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance. Trends in Plant Science 27:802−13

doi: 10.1016/j.tplants.2022.02.008
[68]

Zhang S, Zhu C, Zhang X, Liu M, Xue X, et al. 2023. Single-cell RNA sequencing analysis of the embryogenic callus clarifies the spatiotemporal developmental trajectories of the early somatic embryo in Dimocarpus longan. The Plant Journal 115:1277−97

doi: 10.1111/tpj.16319
[69]

Yao C. 2019. Expression, enzymatic properties and stabilization of cold-adapted β-galactosidase from deep-sea microorganism. Thesis. Shanghai: Shanghai Ocean University.

[70]

Bi A, Wang T, Wang G, Zhang L, Wassie M, et al. 2022. Corrigendum for: stress memory gene FaHSP17.8-CII controls thermotolerance via remodeling PSII and ROS signaling in tall fescue. Plant Physiology 188:670

doi: 10.1093/plphys/kiab495
[71]

Ashraf M, Harris PJC. 2005. Abiotic stresses: plant resistance through breeding and molecular approaches. Boca Raton: CRC Press. 766 pp. https://doi.org/10.1201/9781482293609

[72]

Yang B, Chen Y, Shi J. 2019. Reactive oxygen species (ROS)-based nanomedicine. Chemical Reviews 119:4881−985

doi: 10.1021/acs.chemrev.8b00626