[1]

Gao M, Wang J, Lv Z. 2023. Supplementing Genistein for Breeder Hens Alters the Growth Performance and Intestinal Health of Offspring. Life 13:1468

doi: 10.3390/life13071468
[2]

Macpherson AJ, de Agüero MG, Ganal-Vonarburg SC. 2017. How nutrition and the maternal microbiota shape the neonatal immune system. Nature Reviews Immunology 17:508−17

doi: 10.1038/nri.2017.58
[3]

Percy Z, Vuong AM, Xu Y, Xie C, Ospina M, et al. 2021. Maternal Urinary Organophosphate Esters and Alterations in Maternal and Neonatal Thyroid Hormones. American Journal of Epidemiology 190:1793−802

doi: 10.1093/aje/kwab086
[4]

Das A, Iwata-Otsubo A, Destouni A, Dawicki-McKenna JM, Boese KG, et al. 2022. Epigenetic, genetic and maternal effects enable stable centromere inheritance. Nature Cell Biology 24:748−56

doi: 10.1038/s41556-022-00897-w
[5]

Wong EA, Uni Z. 2021. Centennial Review: The chicken yolk sac is a multifunctional organ. Poultry Science 100:100821

doi: 10.1016/j.psj.2020.11.004
[6]

Fan H, Lv Z, Gan L, Guo Y. 2018. Transcriptomics-Related Mechanisms of Supplementing Laying Broiler Breeder Hens with Dietary Daidzein to Improve the Immune Function and Growth Performance of Offspring. Journal of Agricultural and Food Chemistry 66:2049−60

doi: 10.1021/acs.jafc.7b06069
[7]

Lv Z, Fan H, Zhang B, Ning C, Xing K, et al. 2018. Dietary genistein supplementation in laying broiler breeder hens alters the development and metabolism of offspring embryos as revealed by hepatic transcriptome analysis. The FASEB Journal 32:4214−28

doi: 10.1096/fj.201701457R
[8]

Na W, Wu YY, Gong PF, Wu CY, Cheng BH, et al. 2018. Embryonic transcriptome and proteome analyses on hepatic lipid metabolism in chickens divergently selected for abdominal fat content. BMC Genomics 19:384

doi: 10.1186/s12864-018-4776-9
[9]

Bednarczyk M, Dunislawska A, Stadnicka K, Grochowska E. 2021. Chicken embryo as a model in epigenetic research. Poultry Science 100:101164

doi: 10.1016/j.psj.2021.101164
[10]

Zhang M, Ma X, Zhai Y, Zhang D, Sui L, et al. 2020. Comprehensive transcriptome analysis of lncRNAs reveals the role of lncAD in chicken intramuscular and abdominal adipogenesis. Journal of Agricultural and Food Chemistry 68:3678−88

doi: 10.1021/acs.jafc.9b07405
[11]

Sarropoulos I, Marin R, Cardoso-Moreira M, Kaessmann H. 2019. Developmental dynamics of lncRNAs across mammalian organs and species. Nature 571:510−14

doi: 10.1038/s41586-019-1341-x
[12]

Wang Z, Kong L, Zhu L, Hu X, Su P, et al. 2021. The mixed application of organic and inorganic selenium shows better effects on incubation and progeny parameters. Poultry Science 100:1132−41

doi: 10.1016/j.psj.2020.10.037
[13]

Fu C, Zhang Y, Yao Q, Wei X, Shi T, et al. 2020. Maternal conjugated linoleic acid alters hepatic lipid metabolism via the AMPK signaling pathway in chick embryos. Poultry Science 99:224−34

doi: 10.3382/ps/pez462
[14]

Liu X, Fang Y, Ma X, Li P, Wang P, et al. 2022. Metabolomic profiling to assess the effects of chlordanes and its bioaccumulation characteristics in chicken embryo. Chemosphere 308:136580

doi: 10.1016/j.chemosphere.2022.136580
[15]

Li C, Guo S, Zhang M, Gao J, Guo Y. 2015. DNA methylation and histone modification patterns during the late embryonic and early postnatal development of chickens. Poultry Science 94:706−21

doi: 10.3382/ps/pev016
[16]

Gao M, Liao C, Fu J, Ning Z, Lv Z, et al. 2024. Probiotic cocktails accelerate baicalin metabolism in the ileum to modulate intestinal health in broiler chickens. Journal of Animal Science and Biotechnology 15:25

doi: 10.1186/s40104-023-00974-6
[17]

Lv Z, Fan H, Gao M, Zhang X, Li G, et al. 2024. The accessible chromatin landscape of lipopolysaccharide-induced systemic inflammatory response identifying epigenome signatures and transcription regulatory networks in chickens. International Journal of Biological Macromolecules 266:131136

doi: 10.1016/j.ijbiomac.2024.131136
[18]

Gao M, Chen Y, Li X, Li D, Liu A, et al. 2024. Methionine supplementation regulates eggshell quality and uterine transcriptome in late-stage broiler breeders. Animal Nutrition In press

doi: 10.1016/j.aninu.2024.04.026
[19]

Dai H, Huang Z, Shi F, Li S, Zhang Y, et al. 2024. Effects of maternal hawthorn-leaf flavonoid supplementation on the intestinal development of offspring chicks. Poultry Science 103:103969

doi: 10.1016/j.psj.2024.103969
[20]

Ren J, Sun C, Clinton M, Yang N. 2019. Dynamic transcriptional landscape of the early chick embryo. Frontiers in Cell and Developmental Biology 7:196

doi: 10.3389/fcell.2019.00196
[21]

Liao L, Yao Z, Kong J, Zhang X, Li H, et al. 2022. Transcriptomic analysis reveals the dynamic changes of transcription factors during early development of chicken embryo. BMC Genomics 23:825

doi: 10.1186/s12864-022-09054-x
[22]

Hivert MF, White F, Allard C, James K, Majid S, et al. 2024. Placental IGFBP1 levels during early pregnancy and the risk of insulin resistance and gestational diabetes. Nature Medicine 30:1689−95

doi: 10.1038/s41591-024-02936-5
[23]

Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR. 2014. Thyroid hormones and skeletal muscle—new insights and potential implications. Nature Reviews Endocrinology 10:206−14

doi: 10.1038/nrendo.2013.238
[24]

Hodgkinson CP, Naidoo V, Patti KG, Gomez JA, Schmeckpeper J, et al. 2013. Abi3bp is a multifunctional autocrine/paracrine factor that regulates mesenchymal stem cell biology. Stem Cells 31:1669−82

doi: 10.1002/stem.1416
[25]

Wei W, Qin B, Wen W, Zhang B, Luo H, et al. 2023. FBXW7β loss-of-function enhances FASN-mediated lipogenesis and promotes colorectal cancer growth. Signal Transduction and Targeted Therapy 8:187

doi: 10.1038/s41392-023-01405-8
[26]

Ding Y, Yang J, Ma Y, Yao T, Chen X, et al. 2019. MYCN and PRC1 cooperatively repress docosahexaenoic acid synthesis in neuroblastoma via ELOVL2. Journal of Experimental & Clinical Cancer Research 38:498

doi: 10.1186/s13046-019-1492-5
[27]

Zuidhof MJ, Schneider BL, Carney VL, Korver DR, Robinson FE. 2014. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult Sci 93:2970−82

doi: 10.3382/ps.2014-04291
[28]

Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, et al. 2018. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360:eaar5780

doi: 10.1126/science.aar5780
[29]

Han VX, Patel S, Jones HF, Dale RC. 2021. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nature Reviews Neurology 17:564−79

doi: 10.1038/s41582-021-00530-8
[30]

Cai B, Li Z, Ma M, Wang Z, Han P, et al. 2017. LncRNA-Six1 encodes a micropeptide to activate Six1 in cis and is involved in cell proliferation and muscle growth. Frontiers in Physiology 8:230

doi: 10.3389/fphys.2017.00230
[31]

Ahrens M, Ammerpohl O, von Schönfels W, Kolarova J, Bens S, et al. 2013. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metabolism 18:296−302

doi: 10.1016/j.cmet.2013.07.004
[32]

Martín AI, Priego T, Moreno-Ruperez Á, González-Hedström D, Granado M, et al. 2021. IGF-1 and IGFBP-3 in inflammatory cachexia. International Journal of Molecular Sciences 22:9469

doi: 10.3390/ijms22179469
[33]

Burgdorf JS, Yoon S, Dos Santos M, Lammert CR, Moskal JR, et al. 2023. An IGFBP2-derived peptide promotes neuroplasticity and rescues deficits in a mouse model of Phelan-McDermid syndrome. Molecular Psychiatry 28:1101−11

doi: 10.1038/s41380-022-01904-0
[34]

Yin H, Zhang S, Sun Y, Li S, Ning Y, et al. 2017. MicroRNA-34/449 targets IGFBP-3 and attenuates airway remodeling by suppressing Nur77-mediated autophagy. Cell Death & Disease 8:e2998

doi: 10.1038/cddis.2017.357
[35]

Steyn A, Crowther NJ, Norris SA, Rabionet R, Estivill X, Ramsay M. 2019. Epigenetic modification of the pentose phosphate pathway and the IGFaxis in women with gestational diabetes mellitus. Epigenomics 11:1371–85

doi: 10.2217/epi-2018-0206
[36]

Liu J, Tang T, Wang GD, Liu B. 2019. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease. Bioscience Reports 39:BSR20181722

doi: 10.1042/BSR20181722
[37]

Li X, Wang J, Wang L, Gao Y, Feng G, et al. 2022. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduction and Targeted Therapy 7:162

doi: 10.1038/s41392-022-00964-6
[38]

Bonam SR, Wang F, Muller S. 2019. Lysosomes as a therapeutic target. Nature Reviews Drug Discovery 18:923–48

doi: 10.1038/s41573-019-0036-1
[39]

Hossain MI, Marcus JM, Lee JH, Garcia PL, Singh V, et al. 2021. Restoration of CTSD (cathepsin D) and lysosomal function in stroke is neuroprotective. Autophagy 17:1330−48

doi: 10.1080/15548627.2020.1761219
[40]

Zhang X, Wei M, Fan J, Yan W, Zha X, et al. 2021. Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons. Autophagy 17:1519−42

doi: 10.1080/15548627.2020.1840796
[41]

Feng J, Lin P, Wang Y, Zhang Z. 2019. Molecular characterization, expression patterns, and functional analysis of toll-interacting protein (Tollip) in Japanese eel Anguilla japonica. Fish & Shellfish Immunology 90:52−64

doi: 10.1016/j.fsi.2019.04.053
[42]

Xie K, Lu L, Li Z, Yu L, Xu G, et al. 2020. Transcriptomic analysis of the host response to Salmonella Enteritidis infection in the bursa of Fabricius of broiler chickens. T. Poult Sci 99:4783−94

[43]

Liao L, Yao Z, Kong J, Zhang X, Li H, et al. 2022. Transcriptomic analysis reveals the dynamic changes of transcription factors during early development of chicken embryo. BMC Genomics 23:825

doi: 10.1186/s12864-022-09054-x
[44]

Tritsch NX, Granger AJ, Sabatini BL. 2016. Mechanisms and functions of GABA co-release. Nature Reviews Neuroscience 17:139−45

doi: 10.1038/nrn.2015.21
[45]

Webb SE, Miller AL. 2003. Calcium signalling during embryonic development. Nature Reviews Molecular Cell Biology 4:539−51

doi: 10.1038/nrm1149
[46]

Capiod T. 2011. Cell proliferation, calcium influx and calcium channels. Biochimie 93:2075−79

doi: 10.1016/j.biochi.2011.07.015
[47]

Li-Villarreal N, Forbes MM, Loza AJ, Chen J, Ma T, et al. 2015. Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development 143:1832

doi: 10.1242/dev.138859
[48]

Fletcher DA, Mullins RD. 2010. Cell mechanics and the cytoskeleton. Nature 463:485–92

doi: 10.1038/nature08908
[49]

McKenna ED, Sarbanes SL, Cummings SW, Roll-Mecak A. 2023. The tubulin code, from molecules to health and disease. Annual Review of Cell and Developmental Biology 39:331−61

doi: 10.1146/annurev-cellbio-030123-032748
[50]

Bodakuntla S, Jijumon AS, Villablanca C, Gonzalez-Billault C, Janke C. 2019. Microtubule-associated proteins: structuring the cytoskeleton. Trends in Cell Biology 29:804–19

doi: 10.1016/j.tcb.2019.07.004