| [1] |
Hosmer D, Lemeshow S. 2000. Applied logistic regression. 2nd Edition. Hoboken, NJ: John Wiley & Sons. doi: 10.1002/0471722146 |
| [2] |
Rubin DB. 1976. Inference and missing data. Biometrika 63:581−92 doi: 10.1093/biomet/63.3.581 |
| [3] |
Little RJA, Rubin DB. 2002. Statistical analysis with missing data. 2nd Edition. Hoboken, NJ: John Wiley & Sons. doi: 10.1002/9781119013563 |
| [4] |
Ibrahim JG, Zhu H, Tang N. 2008. Model selection criteria for missing data problems using the EM algorithm. Journal of the American Statistical Association 103(484):1648−58 doi: 10.1198/016214508000001057 |
| [5] |
Peugh JL, Enders CK. 2004. Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research 74:525−56 doi: 10.3102/00346543074004525 |
| [6] |
Baraldi AN, Enders CK. 2010. An introduction to modern missing data analyses. Journal of School Psychology 48:5−37 doi: 10.1016/j.jsp.2009.10.001 |
| [7] |
SAS Institute Inc. 1999. SAS/STAT User’s Guide. Version 8. Cary, NC: SAS Institute Inc. www.sfu.ca/sasdoc/sashtml/hrddoc/indfiles/57388.htm |
| [8] |
Allison PD. 2001. Missing data. Series: Quantitative Applications in the Social Sciences. Thousand Oaks, CA: SAGE Publications. |
| [9] |
Pigott TD. 2001. A review of methods for missing data. Educational Research and Evaluation 7(4):353−83 doi: 10.1076/edre.7.4.353.8937 |
| [10] |
Rubin DB. 1987. Multiple imputation for nonresponse in surveys. Hoboken, NJ: John Wiley & Sons. doi: 10.1002/9780470316696 |
| [11] |
Allison PD. 2002. Missing data. Thousand Oaks, CA: SAGE Publications. doi: 10.4135/9781412985079 |
| [12] |
Enders CK. 2010. Applied missing data analysis. New York: Guilford Press |
| [13] |
Schafer JL, Olsen MK. 1998. Multiple imputation for multivariate missing-data problems: a data analyst's perspective. Multivariate Behavioral Research 33:545−71 doi: 10.1207/s15327906mbr3304_5 |
| [14] |
Liu M, Taylor JMG, Belin TR. 2000. Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies. Biometrics 56(4):1157−63 doi: 10.1111/j.0006-341X.2000.01157.x |
| [15] |
White IR, Royston P, Wood AM. 2011. Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine 30(4):377−99 doi: 10.1002/sim.4067 |
| [16] |
Young R, Johnson DR. 2011. Imputing the missing Y's: implications for survey producers and survey users. Proceedings of the AAPOR conference abstracts pp. 6242−48 |
| [17] |
SAS Institute Inc. 2010. What's New in SAS/STAT 9.22. In SAS/STAT® 9.22 User's Guide. Cary, NC: SAS Institute Inc. https://support.sas.com/documentation/cdl/en/statugwhatsnew/63792/PDF/default/statugwhatsnew.pdf |
| [18] |
Berglund PA. 2010. An introduction to multiple imputation of complex sample data using SAS® v9.2. Cary, NC: SAS Institute Inc. https://support.sas.com/resources/papers/proceedings10/265-2010.pdf |
| [19] |
Fan Y. 2014. Comparison of model selection methods in multiple linear regression model with missing value. Master's Thesis. University of Buffalo, USA. |
| [20] |
Bergtold JS, Yeager EA, Featherstone AM. 2011. Sample size and robustness of inferences from logistic regression in the presence of nonlinearity and multicollinearity. 2011 Annual Meeting, 24−26 July 2011, Pittsburgh, Pennsylvania. Pennsylvania: Agricultural and Applied Economics Association. pp. 227−41. doi: 10.22004/AG.ECON.103771 |
| [21] |
Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. 1996. A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology 49(12):1373−79 doi: 10.1016/S0895-4356(96)00236-3 |
| [22] |
Allison PD. 2012. Handling missing data by maximum likelihood. SAS Global Forum 2012. Stat Horizons. Haverford, PA: Statistical Horizons. https://statisticalhorizons.com/wp-content/uploads/MissingDataByML.pdf |