[1]

Warren GW, Alberg AJ, Kraft AS, Cummings KM. 2014. The 2014 Surgeon General's report: "The health consequences of smoking-50 years of progress": a paradigm shift in cancer care. Cancer 120:1914−16

doi: 10.1002/cncr.28695
[2]

Wittenberg RE, Wolfman SL, De Biasi M, Dani JA. 2020. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology 177:108256

doi: 10.1016/j.neuropharm.2020.108256
[3]

Kenny PJ, Markou A. 2005. Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. The Journal of Neuroscience 25:6208−12

doi: 10.1523/JNEUROSCI.4785-04.2005
[4]

Rice ME, Cragg SJ. 2004. Nicotine amplifies reward-related dopamine signals in striatum. Nature Neuroscience 7:583−84

doi: 10.1038/nn1244
[5]

Nisell M, Nomikos GG, Hertel P, Panagis G, Svensson TH. 1996. Condition-independent sensitization of locomotor stimulation and mesocortical dopamine release following chronic nicotine treatment in the rat. Synapse 22:369−81

doi: 10.1002/(SICI)1098-2396(199604)22:4<369::AID-SYN8>3.0.CO;2-9
[6]

Corrigall WA, Coen KM, Adamson KL. 1994. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research 653:278−84

doi: 10.1016/0006-8993(94)90401-4
[7]

Le Foll B, Piper ME, Fowler CD, Tonstad S, Bierut L, et al. 2022. Tobacco and nicotine use. Nature Reviews Disease Primers 8:19

doi: 10.1038/s41572-022-00346-w
[8]

Yang K, Jin G, Wu J. 2007. The neuropharmacology of (-)-stepholidine and its potential applications. Current Neuropharmacology 5:289−94

doi: 10.2174/157015907782793649
[9]

Mo J, Guo Y, Yang YS, Shen JS, Jin GZ, et al. 2007. Recent developments in studies of l-stepholidine and its analogs: chemistry, pharmacology and clinical implications. Current Medicinal Chemistry 14:2996−3002

doi: 10.2174/092986707782794050
[10]

Zhang ZD, Jin GZ, Xu SX, Yu LP, Chen Y, et al. 1986. Effects of l-stepholidine on the central nervous and cardiovascular systems. Zhongguo Yao Li Xue Bao (Acta Pharmacologica Sinica) 7(6):522−26

[11]

Bian CF, Duan SM, Xing SH, Yu YM, Qin W, et al. 1986. [Interaction of analgesics and l-stepholidine]. Zhongguo Yao Li Xue Bao 7(5):410−13

[12]

Jin GZ, Zhu ZT, Fu Y. 2002. (-)-Stepholidine: a potential novel antipsychotic drug with dual D1 receptor agonist and D2 receptor antagonist actions. Trends in Pharmacological Sciences 23:4−7

doi: 10.1016/s0165-6147(00)01929-5
[13]

Xu SX, Yu LP, Han YR, Chen Y, Jin GZ. 1989. Effects of tetrahydroprotoberberines on dopamine receptor subtypes in brain. Zhongguo Yao Li Xue Bao (Acta Pharmacologica Sinica) 10(2):104−10

[14]

Huang YB, Ma ZG, Zheng C, Ma XK, Taylor DH, et al. 2022. Levo-tetrahydropalmatine inhibits alpha4beta2 nicotinic receptor response to nicotine in cultured SH-EP1 cells. Zhongguo Yao Li Xue Bao (Acta Pharmacologica Sinica) 43:889−96

doi: 10.1038/s41401-021-00709-1
[15]

Gao M, Chu HY, Jin GZ, Zhang ZJ, Wu J, et al. 2011. l-Stepholidine-induced excitation of dopamine neurons in rat ventral tegmental area is associated with its 5-HT(1A) receptor partial agonistic activity. Synapse 65:379−87

doi: 10.1002/syn.20855
[16]

Wu J. 2010. Double target concept for smoking cessation. Acta Pharmacologica Sinica 31:1015−18

doi: 10.1038/aps.2010.137
[17]

Wang C, Zhou J, Wang S, Ye M, Jiang C, et al. 2010. Combined comparative and chemical proteomics on the mechanisms of levo-tetrahydropalmatine-induced antinociception in the formalin test. Journal of Proteome Research 9:3225−34

doi: 10.1021/pr1001274
[18]

Mantsch JR, Wisniewski S, Vranjkovic O, Peters C, Becker A, et al. 2010. Levo-tetrahydropalmatine attenuates cocaine self-administration under a progressive-ratio schedule and cocaine discrimination in rats. Pharmacology, Biochemistry, and Behavior 97:310−16

doi: 10.1016/j.pbb.2010.08.016
[19]

Sun Y, Dai J, Hu Z, Du F, Niu W, et al. 2009. Oral bioavailability and brain penetration of (−)-stepholidine, a tetrahydroprotoberberine agonist at dopamine D1 and antagonist at D2 receptors, in rats. British Journal of Pharmacology 158:1302−12

doi: 10.1111/j.1476-5381.2009.00393.x
[20]

Chu H, Jin G, Friedman E, Zhen X. 2008. Recent development in studies of tetrahydroprotoberberines: mechanism in antinociception and drug addiction. Cellular and Molecular Neurobiology 28:491−99

doi: 10.1007/s10571-007-9179-4
[21]

Mo YQ, Jin XL, Chen YT, Jin GZ, Shi WX. 2005. Effects of l-stepholidine on forebrain Fos expression: comparison with clozapine and haloperidol. Neuropsychopharmacology 30:261−67

doi: 10.1038/sj.npp.1300628
[22]

Guo H, Yu Y, Xing L, Jin GZ, Zhou J. 2002. (−)-Stepholidine promotes proliferation and neuronal differentiation of rat embryonic striatal precursor cells in vitro. Neuroreport 13:2085−89

doi: 10.1097/00001756-200211150-00019
[23]

Wu J, Jin GZ. 1997. Tetrahydroberberine inhibits acetylcholine-induced K+ current in acutely dissociated rat hippocampal CA1 pyramidal neurons. Neuroscience Letters 222:115−18

doi: 10.1016/s0304-3940(97)13356-0
[24]

Hu G, Wu YM, Jin GZ. 1997. (−)-Stepholidine enhances K+ depolarization-induced activation of synaptosomal tyrosine 3-monooxygenase from rat striatum. Zhongguo Yao Li Xue Bao (Acta Pharmacologica Sinica) 18(1):49−52

[25]

Wu J, Jin GZ. 1996. Tetrahydroberberine suppresses dopamine-induced potassium current in acutely dissociated CA1 pyramidal neurons from rat hippocampus. Neuroscience Letters 207:155−58

doi: 10.1016/0304-3940(96)12522-2
[26]

Nesbit MO, Phillips AG. 2020. Tetrahydroprotoberberines: a novel source of pharmacotherapies for substance use disorders? Trends in Pharmacological Sciences 41:147−61

doi: 10.1016/j.tips.2019.12.007
[27]

Su H, Sun T, Wang X, Du Y, Zhao N, et al. 2020. Levo-tetrahydropalmatine attenuates methamphetamine reward behavior and the accompanying activation of ERK phosphorylation in mice. Neuroscience Letters 714:134416

doi: 10.1016/j.neulet.2019.134416
[28]

Su HL, Zhu J, Chen YJ, Zhao N, Han W, et al. 2013. Roles of levo-tetrahydropalmatine in modulating methamphetamine reward behavior. Physiology & Behavior 118:195−200

doi: 10.1016/j.physbeh.2013.05.034
[29]

Wang JB, Mantsch JR. 2012. l-tetrahydropalamatine: a potential new medication for the treatment of cocaine addiction. Future Medicinal Chemistry 4:177−86

doi: 10.4155/fmc.11.166
[30]

Lu L, Liu Y, Zhu W, Shi J, Liu Y, et al. 2009. Traditional medicine in the treatment of drug addiction. The American Journal of Drug and Alcohol Abuse 35:1−11

doi: 10.1080/00952990802455469
[31]

Mantsch JR, Li SJ, Risinger R, Awad S, Katz E, et al. 2007. Levo-tetrahydropalmatine attenuates cocaine self-administration and cocaine-induced reinstatement in rats. Psychopharmacology (Berl) 192:581−91

doi: 10.1007/s00213-007-0754-7
[32]

Du K, Wang Z, Zhang H, Zhang Y, Su H, et al. 2021. Levo-tetrahydropalmatine attenuates the acquisition of fentanyl-induced conditioned place preference and the changes in ERK and CREB phosphorylation expression in mice. Neuroscience Letters 756:135984

doi: 10.1016/j.neulet.2021.135984
[33]

Yu SY, Bai WF, Tu P, Qiu CK, Yang PR, et al. 2016. [Effect of Corydalis Rhizoma and L-tetrahydropalmatine on dopamine system of hippocampus and striatum in morphine-induced conditioned place preference rats]. Zhongguo Zhong Yao Za Zhi (China Journal of Chinese Materia Medica) 41:3643−48

doi: 10.4268/cjcmm20161924
[34]

Yue K, Ma B, Ru Q, Chen L, Gan Y, et al. 2012. The dopamine receptor antagonist levo-tetrahydropalmatine attenuates heroin self-administration and heroin-induced reinstatement in rats. Pharmacology, Biochemistry, and Behavior 102:1−5

doi: 10.1016/j.pbb.2012.03.014
[35]

Liu YL, Yan LD, Zhou PL, Wu CF, Gong ZH. 2009. Levo-tetrahydropalmatine attenuates oxycodone-induced conditioned place preference in rats. European Journal of Pharmacology 602:321−7

doi: 10.1016/j.ejphar.2008.11.031
[36]

Yang Z, Shao YC, Li SJ, Qi JL, Zhang MJ, et al. 2008. Medication of l-tetrahydropalmatine significantly ameliorates opiate craving and increases the abstinence rate in heroin users: a pilot study. Acta Pharmacologica Sinica 29:781−88

doi: 10.1111/j.1745-7254.2008.00817.x
[37]

Faison SL, Schindler CW, Goldberg SR, Wang JB. 2016. l-tetrahydropalmatine reduces nicotine self-administration and reinstatement in rats. BMC Pharmacology & Toxicology 17:49

doi: 10.1186/s40360-016-0093-6
[38]

Hassan HE, Kelly D, Honick M, Shukla S, Ibrahim A, et al. 2017. Pharmacokinetics and safety assessment of l-tetrahydropalmatine in cocaine users: a randomized, double-blind, placebo-controlled study. Journal of Clinical Pharmacology 57:151−60

doi: 10.1002/jcph.789
[39]

García-Gómez L, Hernández-Pérez A, Noé-Díaz V, Riesco-Miranda JA, Jiménez-Ruiz C. 2019. Smoking Cessation Treatments: Current Psychological and Pharmacological Options. Revista De Investigacion Clinica 71:7−16

doi: 10.24875/RIC.18002629
[40]

Corelli RL, Hudmon KS. 2002. Medications for smoking cessation. The Western Journal of Medicine 176:131−35

[41]

Ortiz NC, O'Neill HC, Marks MJ, Grady SR. 2012. Varenicline blocks β2*-nAChR-mediated response and activates β4*-nAChR-mediated responses in mice in vivo. Nicotine & Tobacco Research 14:711−19

doi: 10.1093/ntr/ntr284
[42]

Alkondon M, Albuquerque EX. 2005. Nicotinic receptor subtypes in rat hippocampal slices are differentially sensitive to desensitization and early in vivo functional up-regulation by nicotine and to block by bupropion. The Journal of Pharmacology and Experimental Therapeutics 313:740−50

doi: 10.1124/jpet.104.081232
[43]

Perez XA, Khroyan TV, McIntosh JM, Quik M. 2015. Varenicline enhances dopamine release facilitation more than nicotine after long-term nicotine treatment and withdrawal. Pharmacology Research & Perspectives 3:e00105

doi: 10.1002/prp2.105
[44]

Dwoskin LP, Rauhut AS, King-Pospisil KA, Bardo MT. 2006. Review of the pharmacology and clinical profile of bupropion, an antidepressant and tobacco use cessation agent. CNS Drug Reviews 12:178−207

doi: 10.1111/j.1527-3458.2006.00178.x