[1]

Jollès P, Jollès J. 1984. What's new in lysozyme research? Always a model system, today as yesterday. Molecular and Cellular Biochemistry 63(2):165−89

doi: 10.1007/BF00285225
[2]

Callewaert L, Michiels CW. 2010. Lysozymes in the animal kingdom. Journal of Biosciences 35(1):127−60

doi: 10.1007/s12038-010-0015-5
[3]

Li L, Cardoso JCR, Félix RC, Mateus AP, Canário AVM, et al. 2021. Fish lysozyme gene family evolution and divergent function in early development. Developmental and Comparative Immunology 114:103772

doi: 10.1016/j.dci.2020.103772
[4]

Irwin DM. 2014. Evolution of the vertebrate goose-type lysozyme gene family. BMC Evolutionary Biology 14:188

doi: 10.1186/s12862-014-0188-x
[5]

Hikima J, Minagawa S, Hirono I, Aoki T. 2001. Molecular cloning, expression and evolution of the Japanese flounder goose-type lysozyme gene, and the lytic activity of its recombinant protein. Biochimica et Biophysica Acta 1520(1):35−44

doi: 10.1016/S0167-4781(01)00248-2
[6]

Larsen AN, Solstad T, Svineng G, Seppola M, Jørgensen TØ. 2009. Molecular characterization of a goose-type lysozyme gene in Atlantic cod (Gadus morhua L.). Fish & Shellfish Immunology 26(1):122−32

doi: 10.1016/j.fsi.2008.03.021
[7]

Ye X, Zhang L, Tian Y, Tan A, Bai J, et al. 2010. Identification and expression analysis of the g-type and c-type lysozymes in grass carp Ctenopharyngodon idellus. Developmental and Comparative Immunology 34(5):501−9

doi: 10.1016/j.dci.2009.12.009
[8]

Zhao L, Sun JS, Sun L. 2011. The g-type lysozyme of Scophthalmus maximus has a broad substrate spectrum and is involved in the immune response against bacterial infection. Fish & Shellfish Immunology 30(2):630−7

doi: 10.1016/j.fsi.2010.12.012
[9]

Wang R, Feng J, Li C, Liu S, Zhang Y, et al. 2013. Four lysozymes (one c-type and three g-type) in catfish are drastically but differentially induced after bacterial infection. Fish & Shellfish Immunology 35(1):136−45

doi: 10.1016/j.fsi.2013.04.014
[10]

Buonocore F, Randelli E, Trisolino P, Facchiano A, de Pascale D, et al. 2014. Molecular characterization, gene structure and antibacterial activity of a g-type lysozyme from the European sea bass (Dicentrarchus labrax L.). Molecular Immunology 62(1):10−18

doi: 10.1016/j.molimm.2014.05.009
[11]

Zhang C, Zhang J, Liu M, Huang M. 2018. Molecular cloning, expression and antibacterial activity of goose-type lysozyme gene in Microptenus salmoides. Fish & Shellfish Immunology 82:9−16

doi: 10.1016/j.fsi.2018.07.058
[12]

Mohapatra A, Parida S, Mohanty J, Sahoo PK. 2019. Identification and functional characterization of a g-type lysozyme gene of Labeo rohita, an Indian major carp species. Developmental and Comparative Immunology 92:87−98

doi: 10.1016/j.dci.2018.11.004
[13]

Moreno-Córdova EN, Islas-Osuna MA, Contreras-Vergara CA, López-Zavala AA, Ruiz-Bustos E, et al. 2020. Molecular characterization and expression analysis of the chicken-type and goose-type lysozymes from totoaba (Totoaba macdonaldi). Developmental and Comparative Immunology 113:103807

doi: 10.1016/j.dci.2020.103807
[14]

Liu Y, Zha H, Yu S, Zhong J, Liu X, et al. 2022. Molecular characterization and antibacterial activities of a goose-type lysozyme gene from roughskin sculpin (Trachidermus fasciatus). Fish & Shellfish Immunology 127:1079−87

doi: 10.1016/j.fsi.2022.07.053
[15]

Whang I, Lee Y, Lee S, Oh MJ, Jung SJ, et al. 2011. Characterization and expression analysis of a goose-type lysozyme from the rock bream Oplegnathus fasciatus, and antimicrobial activity of its recombinant protein. Fish & Shellfish Immunology 30(2):532−42

doi: 10.1016/j.fsi.2010.11.025
[16]

Fu GH, Bai ZY, Xia JH, Liu F, Liu P, et al. 2013. Analysis of two lysozyme genes and antimicrobial functions of their recombinant proteins in Asian seabass. PLoS One 8(11):e79743

doi: 10.1371/journal.pone.0079743
[17]

Wei S, Huang Y, Huang X, Cai J, Wei J, et al. 2014. Molecular cloning and characterization of a new G-type lysozyme gene (Ec-lysG) in orange-spotted grouper, Epinephelus coioides. Developmental and Comparative Immunology 46(2):401−12

[18]

Rymuszka A, Studnicka M, Siwicki AK, Sierosławska A, Bownik A. 2005. The immunomodulatory effects of the dimer of lysozyme (KLP-602) in carp (Cyprinus carpio) L. - in vivo study. Ecotoxicology and Environmental Safety 61(1):121−27

doi: 10.1016/j.ecoenv.2004.07.005
[19]

Huang Y, Shi Y, Hu S, Wu T, Zhao Z. 2020. Characterization and functional analysis of two transmembrane c-type lectins in obscure puffer (Takifugu obscurus). Frontiers in Immunology 11:436

doi: 10.3389/fimmu.2020.00436
[20]

Wang RX, Huang Y, Shi Y, Jiang FH, Gao Y, et al. 2022. Characterization and functional analysis of a c-type lysozyme gene from obscure puffer Takifugu obscurus. Developmental & Comparative Immunology 133:104412

doi: 10.1016/j.dci.2022.104412
[21]

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17):3389−402

doi: 10.1093/nar/25.17.3389
[22]

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, et al. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31(13):3784−88

doi: 10.1093/nar/gkg563
[23]

Letunic I, Bork P. 2018. 20 years of the SMART protein domain annotation resource. Nucleic Acids Research 46(D1):D493−D496

doi: 10.1093/nar/gkx922
[24]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research 46(W1):W296−W303

doi: 10.1093/nar/gky427
[25]

Sievers F, Higgins DG. 2014. Clustal omega. Current Protocols in Bioinformatics 48:1.25.1−1.25.33.

doi: 10.1002/0471250953.bi0313s48
[26]

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870−74

doi: 10.1093/molbev/msw054
[27]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods 25(4):402−8

doi: 10.1006/meth.2001.1262
[28]

Saurabh S, Sahoo PK. 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research 39:223−39

doi: 10.1111/j.1365-2109.2007.01883.x
[29]

Ragland SA, Criss AK. 2017. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathogens 13(9):e1006512

doi: 10.1371/journal.ppat.1006512
[30]

Kumaresan V, Bhatt P, Ganesh MR, Harikrishnan R, Arasu M, et al. 2015. A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica. Molecular Immunology 68:421−33

doi: 10.1016/j.molimm.2015.10.001
[31]

Safarian M, Tabandeh MR, Zolgharnein H, Ghotrami ER. 2016. Molecular characteristics of lysozyme G in Euryglossa orientalis; cDNA cloning, phylogenic analysis, physicochemical properties and tissue gene expression. Fish Physiology and Biochemistry 42(6):1833−44

doi: 10.1007/s10695-016-0261-z
[32]

Kawamura S, Ohkuma M, Chijiiwa Y, Kohno D, Nakagawa H, et al. 2008. Role of disulfide bonds in goose-type lysozyme. FEBS Journal 275(11):2818−30

doi: 10.1111/j.1742-4658.2008.06422.x
[33]

Höppner C, Carle A, Sivanesan D, Hoeppner S, Baron C. 2005. The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology 151:3469−82

doi: 10.1099/mic.0.28326-0
[34]

Gao C, Fu Q, Zhou S, Song L, Ren Y, et al. 2016. The mucosal expression signatures of g-type lysozyme in turbot (Scophthalmus maximus) following bacterial challenge. Fish & Shellfish Immunology 54:612−9

doi: 10.1016/j.fsi.2016.05.015
[35]

Zhang XH, He X, Austin B. 2020. Vibrio harveyi: a serious pathogen of fish and invertebrates in mariculture. Marine Life Science & Technology 2(3):231−45

doi: 10.1007/s42995-020-00037-z
[36]

Vaiyapuri M, Joseph TC, Rao BM, Lalitha KV, Prasad MM. 2019. Methicillin-resistant Staphylococcus aureus in seafood: prevalence, laboratory detection, clonal nature, and control in seafood chain. Journal of Food Science 84(12):3341−51

doi: 10.1111/1750-3841.14915
[37]

Ibrahim HR, Aoki T, Pellegrini A. 2002. Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules. Current Pharmaceutical Design 8(9):671−93

doi: 10.2174/1381612023395349
[38]

Sun BJ, Wang GL, Xie HX, Gao Q, Nie P. 2006. Gene structure of goose-type lysozyme in the mandarin fish Siniperca chuatsi with analysis on the lytic activity of its recombinant in Escherichia coli. Aquaculture 252:106−13

doi: 10.1016/j.aquaculture.2005.07.046
[39]

Ko J, Wan Q, Bathige SDNK, Lee J. 2016. Molecular characterization, transcriptional profiling, and antibacterial potential of G-type lysozyme from seahorse (Hippocampus abdominalis). Fish & Shellfish Immunology 58:622−30

doi: 10.1016/j.fsi.2016.10.014
[40]

Li L, Meng H, Gu D, Li Y, Jia M. 2019. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiological Research 222:43−51

doi: 10.1016/j.micres.2019.03.003
[41]

Wu Y, Chen J, Wei W, Miao Y, Liang C, et al. 2022. A study of the antibacterial mechanism of pinocembrin against multidrug-resistant Aeromonas hydrophila. International Microbiology 25(3):605−13

doi: 10.1007/s10123-022-00245-w
[42]

Yin ZX, He JG, Deng WX, Chan SM. 2003. Molecular cloning, expression of orange-spotted grouper goose-type lysozyme cDNA, and lytic activity of its recombinant protein. Diseases of Aquatic Organisms 55(2):117−23

[43]

Yu LP, Sun BG, Li J, Sun L. 2013. Characterization of a c-type lysozyme of Scophthalmus maximus: expression, activity, and antibacterial effect. Fish & Shellfish Immunology 34(1):46−54

doi: 10.1016/j.fsi.2012.10.007