| [1] |
Koch B, Sibbesen O, Swain E, Kahn R, Liangcheng D, et al. 1994. Possible use of a biotechnological approach to optimize and regulate the content and distribution of cyanogenic glucosides in cassava to increase food safety. Acta Horticulturae 375:45−60 doi: 10.17660/actahortic.1994.375.2 |
| [2] |
Ceballos H, Okogbenin E, Pérez JC, Debouck DG. 2010. Cassava. In Root and Tuber Crops. Handbook of Plant Breeding, ed. Bradshaw JE. New York: Springer. pp. 53−96. doi: 10.1007/978-0-387-92765-7 |
| [3] |
El-Sharkawy MA. 2004. Cassava biology and physiology. Plant Molecular Biology 56(4):481−501 doi: 10.1007/s11103-005-2270-7 |
| [4] |
De Souza AP, Massenburg LN, Jaiswal D, Cheng S, Shekar R, et al. 2017. Rooting for cassava: insights into photosynthesis and associated physiology as a route to improve yield potential. New Phytologist 213(1):50−65 doi: 10.1111/nph.14250 |
| [5] |
Ma QX, Feng YC, Luo S, Cheng L, Tong WJ, et al. 2023. The aquaporin MePIP2;7 improves MeMGT9-mediated Mg2+ acquisition in cassava. Journal of Integrative Plant Biology 65(10):2349−67 doi: 10.1111/jipb.13552 |
| [6] |
Tomlinson KR, Bailey AM, Alicai T, Seal S, Foster GD. 2018. Cassava brown streak disease: historical timeline, current knowledge and future prospects. Molecular Plant Pathology 19(5):1282−1294 doi: 10.1111/mpp.12613 |
| [7] |
Uke A, Tokunaga H, Utsumi Y, Vu NA, Nhan PT, et al. 2022. Cassava mosaic disease and its management in Southeast Asia. Plant Molecular Biology 109(3):301−11 doi: 10.1007/s11103-021-01168-2 |
| [8] |
Mukiibi DR, Alicai T, Kawuki R, Okao-Okuja G, Tairo F, et al. 2019. Resistance of advanced cassava breeding clones to infection by major viruses in Uganda. Crop Protection 115:104−12 doi: 10.1016/j.cropro.2018.09.015 |
| [9] |
Ntui VO, Tripathi JN, Kariuki SM, Tripathi L. 2024. Cassava molecular genetics and genomics for enhanced resistance to diseases and pests. Molecular Plant Pathology 25(1):e13402 doi: 10.1111/mpp.13402 |
| [10] |
Akano O, Dixon O, Mba C, Barrera E, Fregene M. 2002. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theoretical and Applied Genetics 105(4):521−25 doi: 10.1007/s00122-002-0891-7 |
| [11] |
Sheat S, Fuerholzner B, Stein B, Winter S. 2019. Resistance against cassava brown streak viruses from Africa in cassava germplasm from South America. Frontiers in Plant Science 10:567 doi: 10.3389/fpls.2019.00567 |
| [12] |
Kongsil P, Ceballos H, Siriwan W, Vuttipongchaikij S, Kittipadakul P, et al. 2024. Cassava breeding and cultivation challenges in Thailand: past, present, and future perspectives. Plants 13(14):1899 doi: 10.3390/plants13141899 |
| [13] |
Panghal A, Munezero C, Sharma P, Chhikara N. 2021. Cassava toxicity, detoxification and its food applications: a review. Toxin Reviews 40:1−16 doi: 10.1080/15569543.2018.1560334 |
| [14] |
Ma Q, Zhang T, Zhang P, Wang ZY. 2016. Melatonin attenuates postharvest physiological deterioration of cassava storage roots. Journal of Pineal Research 60(4):424−34 doi: 10.1111/jpi.12325 |
| [15] |
Ma Q, Xu J, Feng Y, Wu X, Lu X, et al. 2022. Knockdown of p-coumaroyl shikimate/quinate 3'-hydroxylase delays the occurrence of post-harvest physiological deterioration in cassava storage roots. International Journal of Molecular Sciences 23(16):9231 doi: 10.3390/ijms23169231 |
| [16] |
Xu J, Duan X, Yang J, Beeching JR, Zhang P. 2013. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiology 161(3):1517−28 doi: 10.1104/pp.112.212803 |
| [17] |
Giles JAD, Oliosi G, Rodrigues WP, Braun H, Ribeiro-Barros AI, et al. 2018. Agronomic performance and genetic divergence between genotypes of Manihot esculenta. Anais da Academia Brasileira de Ciencias 90(4):3639−48 doi: 10.1590/0001-3765201820180099 |
| [18] |
Ekeleme F, Dixon A, Atser G, Hauser S, Chikoye D, et al. 2021. Increasing cassava root yield on farmers' fields in Nigeria through appropriate weed management. Crop Protection 150:105810 doi: 10.1016/j.cropro.2021.105810 |
| [19] |
Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J. 1996. Genetic transformation of cassava (Manihot esculenta Crantz). Nature Biotechnology 14(6):736−40 doi: 10.1038/nbt0696-736 |
| [20] |
Landi M, Shah T, Falquet L, Niazi A, Stavolone L, et al. 2023. Haplotype-resolved genome of heterozygous African cassava cultivar TMEB117 (Manihot esculenta). Scientific Data 10:887 doi: 10.1038/s41597-023-02800-0 |
| [21] |
Lyons JB, Bredeson JV, Mansfeld BN, Bauchet GJ, Berry J, et al. 2022. Current status and impending progress for cassava structural genomics. Plant Molecular Biology 109:177−91 doi: 10.1007/s11103-020-01104-w |
| [22] |
Ceballos H, Iglesias CA, Pérez JC, Dixon AGO. 2004. Cassava breeding: opportunities and challenges. Plant Molecular Biology 56(4):503−16 doi: 10.1007/s11103-004-5010-5 |
| [23] |
Yin K, Gao C, Qiu JL. 2017. Progress and prospects in plant genome editing. Nature Plants 3:17107 doi: 10.1038/nplants.2017.107 |
| [24] |
Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS. 2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254−57 doi: 10.1038/nature12048 |
| [25] |
Wiedenheft B, Sternberg SH, Doudna JA. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331−38 doi: 10.1038/nature10886 |
| [26] |
Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. 2015. STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348:1477−81 doi: 10.1126/science.aab1452 |
| [27] |
Chang HHY, Pannunzio NR, Adachi N, Lieber MR. 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology 18(8):495−506 doi: 10.1038/nrm.2017.48 |
| [28] |
Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature Biotechnology 34(3):339−44 doi: 10.1038/nbt.3481 |
| [29] |
Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, et al. 2011. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nature Methods 8:753−55 doi: 10.1038/nmeth.1653 |
| [30] |
Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S. 2002. Efficient gene targeting by homologous recombination in rice. Nature Biotechnology 20(10):1030−34 doi: 10.1038/nbt737 |
| [31] |
Li J, Li Y, Ma L. 2021. Recent advances in CRISPR-Cas9 and applications for wheat functional genomics and breeding. aBIOTECH 2(4):375−85 doi: 10.1007/s42994-021-00042-5 |
| [32] |
Li C, Zhang R, Meng X, Chen S, Zong Y, et al. 2020. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology 38(7):875−82 doi: 10.1038/s41587-019-0393-7 |
| [33] |
Wang S, Zong Y, Lin Q, Zhang H, Chai Z, et al. 2020. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. Nature Biotechnology 38(12):1460−65 doi: 10.1038/s41587-020-0566-4 |
| [34] |
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149−57 doi: 10.1038/s41586-019-1711-4 |
| [35] |
Chen L, Park JE, Paa P, Rajakumar PD, Prekop HT, et al. 2021. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nature Communications 12(1):1384 doi: 10.1038/s41467-021-21559-9 |
| [36] |
Wang JY, Doudna JA. 2023. CRISPR technology: A decade of genome editing is only the beginning. Science 379:eadd8643 doi: 10.1126/science.add8643 |
| [37] |
Armario Najera V, Twyman RM, Christou P, Zhu C. 2019. Applications of multiplex genome editing in higher plants. Current Opinion in Biotechnology 59:93−102 doi: 10.1016/j.copbio.2019.02.015 |
| [38] |
Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819−23 doi: 10.1126/science.1231143 |
| [39] |
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186−91 doi: 10.1038/nature14299 |
| [40] |
Steinert J, Schiml S, Fauser F, Puchta H. 2015. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophiles and Staphylococcus aureus. The Plant Journal 84(6):1295−305 doi: 10.1111/tpj.13078 |
| [41] |
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 163(3):759−71 doi: 10.1016/j.cell.2015.09.038 |
| [42] |
Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nature Biotechnology 32(12):1262−67 doi: 10.1038/nbt.3026 |
| [43] |
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32(3):279−84 doi: 10.1038/nbt.2808 |
| [44] |
Li J, Meng X, Zong Y, Chen K, Zhang H, et al. 2016. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants 2:16139 doi: 10.1038/nplants.2016.139 |
| [45] |
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, et al. 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology 169(2):931−45 doi: 10.1104/pp.15.00793 |
| [46] |
Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, et al. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology 33(11):1162−64 doi: 10.1038/nbt.3389 |
| [47] |
Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, et al. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications 7:12617 doi: 10.1038/ncomms12617 |
| [48] |
Liang Z, Chen K, Li T, Zhang Y, Wang Y, et al. 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications 8:14261 doi: 10.1038/ncomms14261 |
| [49] |
Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, et al. 2017. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. The Plant Journal 89(6):1251−62 doi: 10.1111/tpj.13446 |
| [50] |
Wang M, Lu Y, Botella JR, Mao Y, Hua K, et al. 2017. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Molecular Plant 10(7):1007−10 doi: 10.1016/j.molp.2017.03.002 |
| [51] |
Minkenberg B, Wheatley M, Yang Y. 2017. CRISPR/Cas9-enabled multiplex genome editing and its application. In Progress in molecular biology and translational science, eds. Weeks DP, Yang B. Academic Press. pp. 111−32. DOI: 10.1016/bs.pmbts.2017.05.003 |
| [52] |
O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, et al. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516(7530):263−66 doi: 10.1038/nature13769 |
| [53] |
Chen B, Huang B. 2014. Imaging genomic elements in living cells using CRISPR/Cas9. Methods in Enzymology 546:337−54 doi: 10.1016/B978-0-12-801185-0.00016-7 |
| [54] |
Liang F, Zhang Y, Li L, Yang Y, Fei JF, et al. 2022. SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish. Nature Communications 13(1):3421 doi: 10.1038/s41467-022-31034-8 |
| [55] |
Mukami A, Juma BS, Mweu C, Oduor R, Mbinda W. 2024. CRISPR-Cas9-induced targeted mutagenesis of feruloyl CoA 6′-hydroxylase gene reduces postharvest physiological deterioration in cassava roots. Postharvest Biology and Technology 208:112649 doi: 10.1016/j.postharvbio.2023.112649 |
| [56] |
Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, et al. 2019. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal 17(2):421−34 doi: 10.1111/pbi.12987 |
| [57] |
Mehta D, Stürchler A, Anjanappa RB, Zaidi SS, Hirsch-Hoffmann M, et al. 2019. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biology 20(1):80 doi: 10.1186/s13059-019-1678-3 |
| [58] |
Veley KM, Okwuonu I, Jensen G, Yoder M, Taylor NJ, et al. 2021. Gene tagging via CRISPR-mediated homology-directed repair in cassava. G3 Genes|Genomes|Genetics 11(4):jkab028 doi: 10.1093/g3journal/jkab028 |
| [59] |
Wang Y, Geng M, Pan R, Zhang T, Lu X, et al. 2024. Editing of the MeSWEET10a promoter yields bacterial blight resistance in cassava cultivar SC8. Molecular Plant Pathology 25(10):e70010 doi: 10.1111/mpp.70010 |
| [60] |
Veley KM, Elliott K, Jensen G, Zhong Z, Feng S, et al. 2023. Improving cassava bacterial blight resistance by editing the epigenome. Nature Communications 14:85 doi: 10.1038/s41467-022-35675-7 |
| [61] |
Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, et al. 2018. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal 16(7):1275−82 doi: 10.1111/pbi.12868 |
| [62] |
Bull SE, Seung D, Chanez C, Mehta D, Kuon JE, et al. 2018. Accelerated ex situ breeding of GBSS-and PTST1-edited cassava for modified starch. Scientific Advance 4:eaat6086 doi: 10.1126/sciadv.aat6086 |
| [63] |
Li Z, Wang Y, Lu X, Li R, Liu J, et al. 2020. Construction and verification of CRISPR/Cas9 gene editing vector for cassava MeSSIII gene. Molecular Plant Breeding 11(17):1−8 doi: 10.5376/mpb.2020.11.0017 |
| [64] |
Luo S, Ma QX, Zhong YY, Jing JL, Wei ZS, et al. 2022. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava. Plant Molecular Biology 108(4-5):429−42 doi: 10.1007/s11103-021-01215-y |
| [65] |
Juma BS, Mukami A, Mweu C, Ngugi MP, Mbinda W. 2022. Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava. Frontiers in Plant Science 13:1009860 doi: 10.3389/fpls.2022.1009860 |
| [66] |
Gomez MA, Berkoff KC, Gill BK, Iavarone AT, Lieberman SE, et al. 2023. CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production. Frontiers in Plant Science 13:1079254 doi: 10.3389/fpls.2022.1079254 |
| [67] |
Tong W, Luo S, Lu X, Shen J, Lu B, et al. 2024. CRISPR/Cas9 editing MeHNL gene to generate cassava plants with low-cyanogenic glycoside. Biotechnology Bulletin 40(9):11−19 (in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2024-0520 |
| [68] |
Qin G, Gu H, Ma L, Peng Y, Deng XW, et al. 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research 17(5):471−82 doi: 10.1038/cr.2007.40 |
| [69] |
Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, et al. 2017. Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Frontiers in Plant Science 8:1780 doi: 10.3389/fpls.2017.01780 |
| [70] |
Sonnewald U, Kossmann J. 2013. Starches-From current models to genetic engineering. Plant Biotechnology Journal 11(2):223−32 doi: 10.1111/pbi.12029 |
| [71] |
Seung D, Soyk S, Coiro M, Maier BA, Eicke S, et al. 2015. PROTEIN TARGETING TO STARCH is required for localizing GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biology 13:e1002080 doi: 10.1371/journal.pbio.1002080 |
| [72] |
Jobling SA. 2004. Improving starch for food and industrial applications. Current Opinion in Plant Biology 7(2):210−18 doi: 10.1016/j.pbi.2003.12.001 |
| [73] |
McMahon JM, White WLB, Sayre RT. 1995. Cyanogenesis in cassava (Manihot esculenta Crantz). Journal of Experimental Botany 46(7):731−41 doi: 10.1093/jxb/46.7.731 |
| [74] |
Paul L, Shadrack DM, Mudogo CN, Mtei KM, Machunda RL, et al. 2021. Structural characterization of cassava linamarase-linamarin enzyme complex: an integrated computational approach. Journal of Biomolecular Structure & Dynamics 40(19):9270−78 doi: 10.1080/07391102.2021.1925156 |
| [75] |
Siritunga D, Sayre R. 2004. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Plant Molecular Biology 56(4):661−69 doi: 10.1007/s11103-004-3415-9 |
| [76] |
Hawashi M, Sitania C, Caesy C, Aparamarta HW, Widjaja T, et al. 2019. Kinetic data of extraction of cyanide during the soaking process of cassava leaves. Data in Brief 25:104279 doi: 10.1016/j.dib.2019.104279 |
| [77] |
Ndam YN, Mounjouenpou P, Kansci G, Kenfack MJ, Fotso Meguia MP, et al. 2019. Influence of cultivars and processing methods on the cyanide contents of cassava (Manihot esculenta Crantz) and its traditional food products. Scientific African 5:e00119 doi: 10.1016/j.sciaf.2019.e00119 |
| [78] |
Siritunga D, Sayre R. 2007. Transgenic approaches for cyanogen reduction in cassava. Journal of AOAC International 90(5):1450−55 doi: 10.1093/jaoac/90.5.1450 |
| [79] |
Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, et al. 2016. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology 34(5):562−70 doi: 10.1038/nbt.3535 |
| [80] |
Lieberman SE, Gueorguieva GA, Gill BK, Litvak L, Gallegos Cruz A, et al. 2024. Transporter editing in cassava indicates local production of cyanogenic glucosides in, and export from, cassava roots. Plant Biotechnology Journal 22(4):790−92 doi: 10.1111/pbi.14257 |
| [81] |
McCallum EJ, Anjanappa RB, Gruissem W. 2017. Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Current Opinion in Plant Biology 38:50−58 doi: 10.1016/j.pbi.2017.04.008 |
| [82] |
Bart R, Cohn M, Kassen A, McCallum EJ, Shybut M, et al. 2012. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences of USA 109(28):E1972−E1979 doi: 10.1073/pnas.1208003109 |
| [83] |
Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, et al. 2014. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector–mediated induction of a SWEET sugar transporter in cassava. Molecular Plant-Microbe Interactions 27(11):1186−98 doi: 10.1094/MPMI-06-14-0161-R |
| [84] |
Zárate-Chaves CA, Audran C, Medina Culma CA, Escalon A, Javegny S, et al. 2023. CRISPRi in Xanthomonas demonstrates functional convergence of transcription activator-like effectors in two divergent pathogens. New Phytologist 238(4):1593−604 doi: 10.1111/nph.18808 |
| [85] |
Elliott K, Veley KM, Jensen G, Gilbert KB, Norton J, et al. 2024. CRISPR/Cas9-generated mutations in a sugar transporter gene reduce cassava susceptibility to bacterial blight. Plant Physiology 195(4):2566−78 doi: 10.1093/plphys/kiae243 |
| [86] |
Mahadevakumar S, Chandana C, Deepika YS, Sumashri KS, Yadav V, et al. 2018. Pathological studies on the southern blight of China aster (Callistephus chinensis) caused by Sclerotium rolfsii. European Journal of Plant Pathology 151(4):1081−87 doi: 10.1007/s10658-017-1415-2 |
| [87] |
Praveen A, Kannan C. 2021. Disease incidence and severity of Sclerotium rolfsii on Arachis hypogea L. Plant Archives 21(1):344−49 doi: 10.51470/plantarchives.2021.v21.no1.047 |
| [88] |
Changtor P, Jaroenpol W, Buddhachat K, Wattanachaiyingcharoen W, Yimtragool N. 2023. Rapid detection of Sclerotium rolfsii causing dry stem and root rot disease in cassava by recombinase polymerase amplification technique (RPA) combined with CRISPR/Cas12a. Crop Protection 172(4):106340 doi: 10.1016/j.cropro.2023.106340 |
| [89] |
Shi S, Zhang X, Mandel MA, Zhang P, Zhang Y, et al. 2017. Variations of five eIF4E genes across cassava accessions exhibiting tolerant and susceptible responses to cassava brown streak disease. PLoS One 12(8):e018199 doi: 10.1371/journal.pone.0181998 |
| [90] |
Rybicki EP. 2019. CRISPR–Cas9 strikes out in cassava: Transgenic cassava expressing Cas9 is not protected from geminivirus infection. Nature Biotechnology 37:725−29 doi: 10.1038/s41587-019-0174-3 |
| [91] |
Kalyebi A, Macfadyen S, Parry H, Tay WT, De Barro P, et al. 2018. African cassava whitefly, Bemisia tabaci, cassava colonization preferences and control implications. PLoS One 13(10):e0204862 doi: 10.1371/journal.pone.0204862 |
| [92] |
Chatukuta P, Rey MEC. 2020. A cassava protoplast system for screening genes associated with the response to South African cassava mosaic virus. Virology Journal 17(1):184 doi: 10.1186/s12985-020-01453-4 |
| [93] |
Ramulifho E, Rey C. 2024. A coiled-coil nucleotide-binding domain leucine-rich repeat receptor gene MeRPPL1 plays a role in the replication of a geminivirus in cassava. Viruses 16(6):941 doi: 10.3390/v16060941 |
| [94] |
Zhang P. 2022. Tropical crops enter the era of genome editing. Tropical Plants 1:10 doi: 10.48130/TP-2022-0010 |
| [95] |
Zhang P, Puonti-Kaerlas J. 2005. Regeneration of transgenic cassava from transformed embryogenic tissues. Methods in Molecular Biology 286:165−76 doi: 10.1385/1-59259-827-7:165 |
| [96] |
Taylor NJ, Edwards M, Kiernan RJ, Davey CDM, Blakesley D, et al. 1996. Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nature Biotechnology 14(6):726−30 doi: 10.1038/nbt0696-726 |
| [97] |
Wu JZ, Liu Q, Geng XS, Li KM, Luo LJ, et al. 2017. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnology 17(1):29 doi: 10.1186/s12896-017-0349-2 |
| [98] |
Schöpke C, Taylor N, Cárcamo R, Konan NK, Marmey P, et al. 1996. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nature Biotechnology 14(6):731−35 doi: 10.1038/nbt0696-731 |
| [99] |
Zhang P, Legris G, Coulin P, Puonti-Kaerlas J. 2000. Production of stably transformed cassava plants via particle bombardment. Plant Cell Reports 19(10):939−945 doi: 10.1007/s002990000224 |
| [100] |
Ozyigit II, Yucebilgili Kurtoglu K. 2020. Particle bombardment technology and its applications in plants. Molecular Biology Reports 47(12):9831−9847 doi: 10.1007/s11033-020-06001-5 |
| [101] |
Lentz EM, Kuon JE, Alder A, Mangel N, Zainuddin IM, et al. 2018. Cassava geminivirus agroclones for virus-induced gene silencing in cassava leaves and roots. Plant Methods 14:73 doi: 10.1186/s13007-018-0340-5 |
| [102] |
Beyene G, Chauhan RD, Gehan J, Siritunga D, Taylor N. 2022. Cassava shrunken-2 homolog MeAPL3 determines storage root starch and dry matter content and modulates storage root postharvest physiological deterioration. Plant Molecular Biology 109(3):283−99 doi: 10.1007/s11103-020-00995-z |
| [103] |
Zhang H, Ye Z, Liu Z, Sun Y, Li X, et al. 2022. The cassava NBS-LRR genes confer resistance to cassava bacterial blight. Frontiers in Plant Science 13:790140 doi: 10.3389/fpls.2022.790140 |
| [104] |
Yao X, Liang X, Chen Q, Liu Y, Wu C, et al. 2023. MePAL6 regulates lignin accumulation to shape cassava resistance against two-spotted spider mite. Frontiers in Plant Science 13:1067695 doi: 10.3389/fpls.2022.1067695 |
| [105] |
Ye Y, Ouyang Z, Guo C, Wu Y, Li J, et al. 2023. Identification of two cassava receptor-like cytoplasmic kinase genes related to disease resistance via genome-wide and functional analysis. Genomics 115(3):110626 doi: 10.1016/j.ygeno.2023.110626 |
| [106] |
Tuo D, Yao Y, Yan P, Chen X, Qu F, et al. 2023. Development of cassava common mosaic virus-based vector for protein expression and gene editing in cassava. Plant Methods 19:78 doi: 10.1186/s13007-023-01055-5 |
| [107] |
Li Z, Zhong Z, Wu Z, Pausch P, Al-Shayeb B, et al. 2023. Genome editing in plants using the compact editor CasΦ. Proceedings of the National Academy of Sciences of the United States of America 120(4):e2216822120 doi: 10.1073/pnas.2216822120 |
| [108] |
Ma Q, Zhou W, Zhang P. 2015. Transition from somatic embryo to friable embryogenic callus in cassava: dynamic changes in cellular structure, physiological status, and gene expression profiles. Frontiers in Plant Science 6:824 doi: 10.3389/fpls.2015.00824 |
| [109] |
Segatto R, Jones T, Stretch D, Albin C, Chauhan RD, et al. 2022. Agrobacterium-mediated genetic transformation of cassava. Current Protocols 2(12):e620 doi: 10.1002/cpz1.620 |
| [110] |
Utsumi Y, Utsumi C, Tanaka M, Okamoto Y, Takahashi S, et al. 2022. Agrobacterium-mediated cassava transformation for the Asian elite variety KU50. Plant Molecular Biology 109(3):271−82 doi: 10.1007/s11103-021-01212-1 |
| [111] |
Wang YJ, Lu XH, Zhen XH, Yang H, Che YN, et al. 2022. A transformation and genome editing system for cassava cultivar SC8. Genes 13(9):1650 doi: 10.3390/genes13091650 |
| [112] |
Nyaboga EN, Njiru JM, Tripathi L. 2015. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14. Frontiers in Plant Science 6:411 doi: 10.3389/fpls.2015.00411 |
| [113] |
Mathews H, Schopke C, Carcamo R, Chavarriaga P, Fauquet C, et al. 1993. Improvement of somatic embryogenesis and plant recovery in cassava. Plant Cell Reports 12(6):328−33 doi: 10.1007/BF00237429 |
| [114] |
Elegba W, McCallum E, Gruissem W, Vanderschuren H. 2021. Efficient genetic transformation and regeneration of a farmer-preferred cassava cultivar from Ghana. Frontiers in Plant Science 12:668042 doi: 10.3389/fpls.2021.668042 |
| [115] |
Duan H, Maren NA, Ranney TG, Liu W. 2022. New opportunities for using WUS/BBM and GRF-GIF genes to enhance genetic transformation of ornamental plants. Ornamental Plant Research 2:4 doi: 10.48130/OPR-2022-0004 |
| [116] |
Jiang W, Zhou H, Bi H, Fromm M, Yang B, et al. 2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41(20):e188 doi: 10.1093/nar/gkt780 |
| [117] |
Zhang R, Liu J, Chai Z, Chen S, Bai Y, et al. 2019. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants 5(5):480−85 doi: 10.1038/s41477-019-0405-0 |