| [1] |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, et al. 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal For Clinicians 71:209−49 doi: 10.3322/caac.21660 |
| [2] |
Xi Y, Xu P. 2021. Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology 14:101174 doi: 10.1016/j.tranon.2021.101174 |
| [3] |
Keum N, Giovannucci E. 2019. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nature Reviews Gastroenterology & Hepatology 16:713−32 doi: 10.1038/s41575-019-0189-8 |
| [4] |
Siegel R, Desantis C, Jemal A. 2014. Colorectal cancer statistics, 2014. CA: a Cancer Journal For Clinicians 64:104−17 doi: 10.3322/caac.21220 |
| [5] |
Pan Z, Peng J, Lin J, Chen G, Wu X, et al. 2018. Is there a survival benefit from adjuvant chemotherapy for patients with liver oligometastases from colorectal cancer after curative resection? Cancer Communications 38:29 doi: 10.1186/s40880-018-0298-8 |
| [6] |
Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, et al. 2017. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. Journal of Hepatology 66:212−27 doi: 10.1016/j.jhep.2016.07.009 |
| [7] |
Friedman SL. 2008. Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655−69 doi: 10.1053/j.gastro.2008.03.003 |
| [8] |
Wang Y, Zhong X, He X, Hu Z, Huang H, et al. 2023. Liver metastasis from colorectal cancer: pathogenetic development, immune landscape of the tumour microenvironment and therapeutic approaches. Journal of Experimental & Clinical Cancer Research 42:177 doi: 10.1186/s13046-023-02729-7 |
| [9] |
Oura K, Morishita A, Tani J, Masaki T. 2021. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. International Journal of Molecular Sciences 22:5801 doi: 10.3390/ijms22115801 |
| [10] |
Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, et al. 2021. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell 39:708−724.e11 doi: 10.1016/j.ccell.2021.03.004 |
| [11] |
Shin AE, Giancotti FG, Rustgi AK. 2023. Metastatic colorectal cancer: mechanisms and emerging therapeutics. Trends in Pharmacological Sciences 44:222−36 doi: 10.1016/j.tips.2023.01.003 |
| [12] |
Kaplan RN, Rafii S, Lyden D. 2006. Preparing the "soil": the premetastatic niche. Cancer Research 66:11089−93 doi: 10.1158/0008-5472.CAN-06-2407 |
| [13] |
Vidal-Vanaclocha F. 2011. The liver prometastatic reaction of cancer patients: implications for microenvironment-dependent colon cancer gene regulation. Cancer Microenvironment 4:163−80 doi: 10.1007/s12307-011-0084-5 |
| [14] |
Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, et al. 2015. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology 17:816−26 doi: 10.1038/ncb3169 |
| [15] |
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, et al. 2022. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduction and Targeted Therapy 7:70 doi: 10.1038/s41392-022-00922-2 |
| [16] |
Brodt P. 2016. Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clinical Cancer Research 22:5971−82 doi: 10.1158/1078-0432.CCR-16-0460 |
| [17] |
Sun H, Meng Q, Shi C, Yang H, Li X, et al. 2021. Hypoxia-inducible exosomes facilitate liver-tropic premetastatic niche in colorectal cancer. Hepatology 74:2633−51 doi: 10.1002/hep.32009 |
| [18] |
Vidal-Vanaclocha F. 2011. The tumor microenvironment at different stages of hepatic metastasis. In Liver Metastasis: Biology and Clinical Management, ed. Brodt P. Dordrecht, Netherlands: Springer. pp. 43-87. doi: 10.1007/978-94-007-0292-9_3 |
| [19] |
Piñeiro Fernández J, Luddy KA, Harmon C, O'Farrelly C. 2019. Hepatic tumor microenvironments and effects on NK cell phenotype and function. International Journal of Molecular Sciences 20:4131 doi: 10.3390/ijms20174131 |
| [20] |
Timmers M, Vekemans K, Vermijlen D, Asosingh K, Kuppen P, et al. 2004. Interactions between rat colon carcinoma cells and Kupffer cells during the onset of hepatic metastasis. International Journal of Cancer 112:793−802 doi: 10.1002/ijc.20481 |
| [21] |
Arteta B, Lasuen N, Lopategi A, Sveinbjörnsson B, Smedsrød B, et al. 2010. Colon carcinoma cell interaction with liver sinusoidal endothelium inhibits organ-specific antitumor immunity through interleukin-1-induced mannose receptor in mice. Hepatology 51:2172−82 doi: 10.1002/hep.23590 |
| [22] |
Mendoza L, Carrascal T, De Luca M, Fuentes AM, Salado C, et al. 2001. Hydrogen peroxide mediates vascular cell adhesion molecule-1 expression from interleukin-18-activated hepatic sinusoidal endothelium: implications for circulating cancer cell arrest in the murine liver. Hepatology 34:298−310 doi: 10.1053/jhep.2001.26629 |
| [23] |
Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, et al. 2017. Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer 17:302−17 doi: 10.1038/nrc.2017.6 |
| [24] |
Liu X, Xu J, Rosenthal S, Zhang LJ, McCubbin R, et al. 2020. Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology 158:1728−1744.e14 doi: 10.1053/j.gastro.2020.01.027 |
| [25] |
Kisseleva T, Brenner D. 2021. Molecular and cellular mechanisms of liver fibrosis and its regression. Nature Reviews Gastroenterology & Hepatology 18:151−66 doi: 10.1038/s41575-020-00372-7 |
| [26] |
Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, et al. 2008. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 135:1729−38 doi: 10.1053/j.gastro.2008.07.065 |
| [27] |
Solaun MS, Mendoza L, De Luca M, Gutierrez V, López MP, et al. 2002. Endostatin inhibits murine colon carcinoma sinusoidal-type metastases by preferential targeting of hepatic sinusoidal endothelium. Hepatology 35:1104−16 doi: 10.1053/jhep.2002.32528 |
| [28] |
Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, et al. 2013. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Cancer Research 73:2031−43 doi: 10.1158/0008-5472.CAN-12-3931 |
| [29] |
Milette S, Sicklick JK, Lowy AM, Brodt P. 2017. Molecular pathways: targeting the microenvironment of liver metastases. Clinical Cancer Research 23:6390−99 doi: 10.1158/1078-0432.CCR-15-1636 |
| [30] |
Fan A, Wang B, Wang X, Nie Y, Fan D, et al. 2021. Immunotherapy in colorectal cancer: current achievements and future perspective. International Journal of Biological Sciences 17:3837−49 doi: 10.7150/ijbs.64077 |
| [31] |
Gao B, Jeong WI, Tian Z. 2008. Liver: An organ with predominant innate immunity. Hepatology 47:729−36 doi: 10.1002/hep.22034 |
| [32] |
Roberts RA, Ganey PE, Ju C, Kamendulis LM, Rusyn I, et al. 2007. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicological Sciences 96:2−15 doi: 10.1093/toxsci/kfl173 |
| [33] |
Ciner AT, Jones K, Muschel RJ, Brodt P. 2021. The unique immune microenvironment of liver metastases: challenges and opportunities. Seminars in Cancer Biology 71:143−56 doi: 10.1016/j.semcancer.2020.06.003 |
| [34] |
Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. 2013. Kupffer cells in the liver. Comprehensive Physiology 3:785−97 doi: 10.1002/cphy.c120026 |
| [35] |
Wen SW, Ager EI, Christophi C. 2013. Bimodal role of Kupffer cells during colorectal cancer liver metastasis. Cancer Biology & Therapy 14:606−13 doi: 10.4161/cbt.24593 |
| [36] |
Matsumura H, Kondo T, Ogawa K, Tamura T, Fukunaga K, et al. 2014. Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage. International Journal of Oncology 45:2303−10 doi: 10.3892/ijo.2014.2662 |
| [37] |
Taniguchi K, Karin M. 2014. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Seminars in Immunology 26:54−74 doi: 10.1016/j.smim.2014.01.001 |
| [38] |
Heymann F, Peusquens J, Ludwig-Portugall I, Kohlhepp M, Ergen C, et al. 2015. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 62:279−91 doi: 10.1002/hep.27793 |
| [39] |
Jiang K, Chen H, Fang Y, Chen L, Zhong C, et al. 2021. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness. Journal of Experimental & Clinical Cancer Research 40:21 doi: 10.1186/s13046-020-01816-3 |
| [40] |
Shasha T, Gruijs M, van Egmond M. 2022. Mechanisms of colorectal liver metastasis development. Cellular and Molecular Life Sciences 79:607 doi: 10.1007/s00018-022-04630-6 |
| [41] |
Tang D, Wang H, Deng W, Wang J, Shen D, et al. 2024. Mechanism of bufalin inhibition of colon cancer liver metastasis by regulating M2-type polarization of Kupffer cells induced by highly metastatic colon cancer cells. Apoptosis 29:635−48 doi: 10.1007/s10495-023-01930-5 |
| [42] |
Szafranska K, Kruse LD, Holte CF, McCourt P, Zapotoczny B. 2021. The wHole story about fenestrations in LSEC. Frontiers in Physiology 12:735573 doi: 10.3389/fphys.2021.735573 |
| [43] |
Wittlich M, Dudek M, Böttcher JP, Schanz O, Hegenbarth S, et al. 2017. Liver sinusoidal endothelial cell cross-priming is supported by CD4 T cell-derived IL-2. Journal of Hepatology 66:978−86 doi: 10.1016/j.jhep.2016.12.015 |
| [44] |
Hammoutene A, Rautou PE. 2019. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. Journal of Hepatology 70:1278−91 doi: 10.1016/j.jhep.2019.02.012 |
| [45] |
Braet F, Nagatsuma K, Saito M, Soon L, Wisse E, et al. 2007. The hepatic sinusoidal endothelial lining and colorectal liver metastases. World Journal of Gastroenterology 13:821−25 doi: 10.3748/wjg.v13.i6.821 |
| [46] |
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. 2023. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 78:649−69 doi: 10.1097/HEP.0000000000000207 |
| [47] |
Hamidi H, Ivaska J. 2018. Every step of the way: integrins in cancer progression and metastasis. Nature Reviews Cancer 18:533−48 doi: 10.1038/s41568-018-0038-z |
| [48] |
Yoshimoto K, Tajima H, Ohta T, Okamoto K, Sakai S, et al. 2012. Increased E-selectin in hepatic ischemia-reperfusion injury mediates liver metastasis of pancreatic cancer. Oncology Reports 28:791−96 doi: 10.3892/or.2012.1896 |
| [49] |
Ikeguchi M, Makino M, Kaibara N. 2001. Clinical significance of E-cadherin-catenin complex expression in metastatic foci of colorectal carcinoma. Journal of Surgical Oncology 77:201−7 doi: 10.1002/jso.1095 |
| [50] |
Tang L, Yang J, Liu W, Tang X, Chen J, et al. 2009. Liver sinusoidal endothelial cell lectin, LSECtin, negatively regulates hepatic T-cell immune response. Gastroenterology 137:1498−1508.e1-5 doi: 10.1053/j.gastro.2009.07.051 |
| [51] |
Lu J, Kornmann M, Traub B. 2023. Role of epithelial to mesenchymal transition in colorectal cancer. International Journal of Molecular Sciences 24:14815 doi: 10.3390/ijms241914815 |
| [52] |
Kamm DR, McCommis KS. 2022. Hepatic stellate cells in physiology and pathology. The Journal of Physiology 600:1825−37 doi: 10.1113/JP281061 |
| [53] |
Trivedi P, Wang S, Friedman SL. 2021. The power of plasticity-metabolic regulation of hepatic stellate cells. Cell Metabolism 33:242−57 doi: 10.1016/j.cmet.2020.10.026 |
| [54] |
Zhao S, Mi Y, Zheng B, Wei P, Gu Y, et al. 2022. Highly-metastatic colorectal cancer cell released miR-181a-5p-rich extracellular vesicles promote liver metastasis by activating hepatic stellate cells and remodelling the tumour microenvironment. Journal of Extracellular Vesicles 11:e12186 doi: 10.1002/jev2.12186 |
| [55] |
Zhao W, Zhang L, Xu Y, Zhang Z, Ren G, et al. 2014. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Laboratory Investigation 94:182−91 doi: 10.1038/labinvest.2013.139 |
| [56] |
Huang WH, Zhou MW, Zhu YF, Xiang JB, Li ZY, et al. 2019. The role of hepatic stellate cells in promoting liver metastasis of colorectal carcinoma. OncoTargets and Therapy 12:7573−80 doi: 10.2147/OTT.S214409 |
| [57] |
Eveno C, Hainaud P, Rampanou A, Bonnin P, Bakhouche S, et al. 2015. Proof of prometastatic niche induction by hepatic stellate cells. Journal of Surgical Research 194:496−504 doi: 10.1016/j.jss.2014.11.005 |
| [58] |
Keirsse J, Van Damme H, Geeraerts X, Beschin A, Raes G, et al. 2018. The role of hepatic macrophages in liver metastasis. Cellular Immunology 330:202−15 doi: 10.1016/j.cellimm.2018.03.010 |
| [59] |
Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, et al. 2018. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554:538−43 doi: 10.1038/nature25492 |
| [60] |
Naim A, Baig MS. 2020. Matrix metalloproteinase-8 (MMP-8) regulates the activation of hepatic stellate cells (HSCs) through the ERK-mediated pathway. Molecular and Cellular Biochemistry 467:107−16 doi: 10.1007/s11010-020-03705-x |
| [61] |
Lachowski D, Cortes E, Rice A, Pinato D, Rombouts K, et al. 2019. Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis. Scientific Reports 9:7299 doi: 10.1038/s41598-019-43759-6 |
| [62] |
Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, et al. 2013. IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver. Journal of Clinical Investigation 123:1138−56 doi: 10.1172/JCI63836 |
| [63] |
Mook ORF, van Marie J, Jonges R, Vreeling-Sindelarova H, Frederiks WM, et al. 2008. Interactions between colon cancer cells and hepatocytes in rats in relation to metastasis. Journal of Cellular and Molecular Medicine 12:2052−61 doi: 10.1111/j.1582-4934.2008.00242.x |
| [64] |
Kasprzak A. 2021. Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. International Journal of Molecular Sciences 22:6434 doi: 10.3390/ijms22126434 |
| [65] |
Yao HP, Zhou YQ, Zhang R, Wang MH. 2013. MSP-RON signalling in cancer: pathogenesis and therapeutic potential. Nature Reviews Cancer 13:466−81 doi: 10.1038/nrc3545 |
| [66] |
Johnson DE, O'Keefe RA, Grandis JR. 2018. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature Reviews Clinical Oncology 15:234−48 doi: 10.1038/nrclinonc.2018.8 |
| [67] |
Lee JW, Stone ML, Porrett PM, Thomas SK, Komar CA, et al. 2019. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 567:249−52 doi: 10.1038/s41586-019-1004-y |
| [68] |
Döme B, Hendrix MJC, Paku S, Tóvári J, Tímár J. 2007. Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. The American Journal of Pathology 170:1−15 doi: 10.2353/ajpath.2007.060302 |
| [69] |
Keeley T, Costanzo-Garvey DL, Cook LM. 2019. Unmasking the Many Faces of Tumor-Associated Neutrophils and Macrophages: Considerations for Targeting Innate Immune Cells in Cancer. Trends Cancer 5:789−98 doi: 10.1016/j.trecan.2019.10.013 |
| [70] |
Robinson MW, Harmon C, O'Farrelly C. 2016. Liver immunology and its role in inflammation and homeostasis. Cellular & Molecular Immunology 13:267−76 doi: 10.1038/cmi.2016.3 |
| [71] |
Hiratsuka S, Watanabe A, Aburatani H, Maru Y. 2006. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology 8:1369−75 doi: 10.1038/ncb1507 |
| [72] |
Shang A, Gu C, Zhou C, Yang Y, Chen C, et al. 2020. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression. Cell Communication and Signaling 18:52 doi: 10.1186/s12964-020-0517-1 |
| [73] |
Zhu K, Li P, Mo Y, Wang J, Jiang X, et al. 2020. Neutrophils: Accomplices in metastasis. Cancer Letters 492:11−20 doi: 10.1016/j.canlet.2020.07.028 |
| [74] |
Guan X, Lu Y, Zhu H, Yu S, Zhao W, et al. 2021. The crosstalk between cancer cells and neutrophils enhances hepatocellular carcinoma metastasis via neutrophil extracellular traps-associated cathepsin G component: a potential therapeutic target. Journal of Hepatocellular Carcinoma 8:451−65 doi: 10.2147/JHC.S303588 |
| [75] |
Zhou J, Nefedova Y, Lei A, Gabrilovich D. 2018. Neutrophils and PMN-MDSC: their biological role and interaction with stromal cells. Seminars in Immunology 35:19−28 doi: 10.1016/j.smim.2017.12.004 |
| [76] |
Guerriero JL. 2019. Macrophages: their untold story in T cell activation and function. International Review of Cell and Molecular Biology 342:73−93 doi: 10.1016/bs.ircmb.2018.07.001 |
| [77] |
Locati M, Curtale G, Mantovani A. 2020. Diversity, mechanisms, and significance of macrophage plasticity. Annual Review of Pathology 15:123−47 doi: 10.1146/annurev-pathmechdis-012418-012718 |
| [78] |
Xiang X, Wang J, Lu D, Xu X. 2021. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduction and Targeted Therapy 6:75 doi: 10.1038/s41392-021-00484-9 |
| [79] |
Pan Y, Yu Y, Wang X, Zhang T. 2020. Tumor-associated macrophages in tumor immunity. Frontiers in Immunology 11:583084 doi: 10.3389/fimmu.2020.583084 |
| [80] |
Wen Y, Wu X, Wu W, Feng T, Pan Y, et al. 2024. A mitochondria-targeted nitric oxide probe for multimodality imaging of macrophage immune responses. Analytical Chemistry 96:6666−73 doi: 10.1021/acs.analchem.4c00083 |
| [81] |
Wang S, Wang J, Chen Z, Luo J, Guo W, et al. 2024. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precision Oncology 8:31 doi: 10.1038/s41698-024-00522-z |
| [82] |
Mills CD, Lenz LL, Harris RA. 2016. A breakthrough: macrophage-directed cancer immunotherapy. Cancer Research 76:513−16 doi: 10.1158/0008-5472.CAN-15-1737 |
| [83] |
Yang L, Zhang Y. 2017. Tumor-associated macrophages: from basic research to clinical application. Journal of Hematology & Oncology 10:58 doi: 10.1186/s13045-017-0430-2 |
| [84] |
Mills CD. 2015. Anatomy of a discovery: m1 and m2 macrophages. Frontiers in Immunology 6:212 doi: 10.3389/fimmu.2015.00212 |
| [85] |
Wang D, Wang X, Si M, Yang J, Sun S, et al. 2020. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Letters 474:36−52 doi: 10.1016/j.canlet.2020.01.005 |
| [86] |
Liang L, Liu L, Zhou W, Yang C, Mai G, et al. 2022. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway. Clinical Science 136:291−307 doi: 10.1042/CS20210778 |
| [87] |
Wu Y, Yang S, Ma J, Chen Z, Song G, et al. 2022. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discovery 12:134−53 doi: 10.1158/2159-8290.CD-21-0316 |
| [88] |
Davis RJ, Van Waes C, Allen CT. 2016. Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. Oral Oncology 58:59−70 doi: 10.1016/j.oraloncology.2016.05.002 |
| [89] |
Dardalhon V, Anderson AC, Karman J, Apetoh L, Chandwaskar R, et al. 2010. Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. Journal of Immunology 185:1383−92 doi: 10.4049/jimmunol.0903275 |
| [90] |
Gao X, Sui H, Zhao S, Gao X, Su Y, et al. 2020. Immunotherapy targeting myeloid-derived suppressor cells (MDSCs) in tumor microenvironment. Frontiers in Immunology 11:585214 doi: 10.3389/fimmu.2020.585214 |
| [91] |
Veglia F, Perego M, Gabrilovich D. 2018. Myeloid-derived suppressor cells coming of age. Nature Immunology 19:108−19 doi: 10.1038/s41590-017-0022-x |
| [92] |
Liu P, Chen L, Zhang H. 2018. Natural killer cells in liver disease and hepatocellular carcinoma and the NK cell-based immunotherapy. Journal of Immunology Research 2018:1206737 doi: 10.1155/2018/1206737 |
| [93] |
Hadrup S, Donia M, Thor Straten P. 2013. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenvironment 6:123−33 doi: 10.1007/s12307-012-0127-6 |
| [94] |
Sun H, Kim E, Ryu J, Lee H, Shin EA, et al. 2021. TM4SF5-mediated liver malignancy involves NK cell exhaustion-like phenotypes. Cellular and Molecular Life Sciences 79:49 doi: 10.1007/s00018-021-04051-x |
| [95] |
Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, et al. 2014. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 59:567−79 doi: 10.1002/hep.26694 |
| [96] |
Wortzel I, Dror S, Kenific CM, Lyden D. 2019. Exosome-mediated metastasis: communication from a distance. Developmental Cell 49:347−60 doi: 10.1016/j.devcel.2019.04.011 |
| [97] |
Zhang J, Xiao Z, Lai D, Sun J, He C, et al. 2012. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. British Journal of Cancer 107:352−59 doi: 10.1038/bjc.2012.251 |
| [98] |
Zeng Z, Li Y, Pan Y, Lan X, Song F, et al. 2018. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nature Communications 9:5395 doi: 10.1038/s41467-018-07810-w |
| [99] |
Zhao S, Mi Y, Guan B, Zheng B, Wei P, et al. 2020. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. Journal of Hematology & Oncology 13:156 doi: 10.1186/s13045-020-00991-2 |
| [100] |
Yang X, Zhang Y, Zhang Y, Li H, Li L, et al. 2023. Colorectal cancer-derived extracellular vesicles induce liver premetastatic immunosuppressive niche formation to promote tumor early liver metastasis. Signal Transduction and Targeted Therapy 8:102 doi: 10.1038/s41392-023-01384-w |
| [101] |
Sun B, Zhou Y, Fang Y, Li Z, Gu X, et al. 2019. Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes. International Journal of Cancer 145:1648−59 doi: 10.1002/ijc.32196 |
| [102] |
Derynck R, Weinberg RA. 2019. EMT and cancer: more than meets the eye. Developmental Cell 49:313−16 doi: 10.1016/j.devcel.2019.04.026 |
| [103] |
Xiao GY, Tan X, Rodriguez BL, Gibbons DL, Wang S, et al. 2023. EMT activates exocytotic Rabs to coordinate invasion and immunosuppression in lung cancer. Proceedings of the National Academy of Sciences of the United States of America 120:e2220276120 doi: 10.1073/pnas.2220276120 |
| [104] |
Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, et al. 2021. Tumor immune microenvironment during epithelial-mesenchymal transition. Clinical Cancer Research 27:4669−79 doi: 10.1158/1078-0432.CCR-20-4459 |
| [105] |
Jiang Y, Zhan H. 2020. Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion. Cancer Letters 468:72−81 doi: 10.1016/j.canlet.2019.10.013 |
| [106] |
Cassier PA, Navaridas R, Bellina M, Rama N, Ducarouge B, et al. 2023. Netrin-1 blockade inhibits tumour growth and EMT features in endometrial cancer. Nature 620:409−16 doi: 10.1038/s41586-023-06367-z |
| [107] |
American Cancer Society. 2020. Colorectal cancer facts & figures 2020−2022. Atlanta: American Cancer Society. www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-figures-2020-2022.pdf |
| [108] |
Choti MA, Sitzmann JV, Tiburi MF, Sumetchotimetha W, Rangsin R, et al. 2002. Trends in long-term survival following liver resection for hepatic colorectal metastases. Annals of Surgery 235:759−66 doi: 10.1097/00000658-200206000-00002 |
| [109] |
Aykut B, Lidsky ME. 2023. Colorectal cancer liver metastases: multimodal therapy. Surgical Oncology Clinics of North America 32:119−41 doi: 10.1016/j.soc.2022.07.009 |
| [110] |
Sharma S, Camci C, Jabbour N. 2008. Management of hepatic metastasis from colorectal cancers: an update. Journal of Hepato-Biliary-Pancreatic Surgery 15:570−80 doi: 10.1007/s00534-008-1350-x |
| [111] |
Turrini O, Viret F, Guiramand J, Lelong B, Bège T, et al. 2007. Strategies for the treatment of synchronous liver metastasis. European Journal of Surgical Oncology 33:735−40 doi: 10.1016/j.ejso.2007.02.025 |
| [112] |
Kelly ME, Spolverato G, Le GN, Mavros MN, Doyle F, et al. 2015. Synchronous colorectal liver metastasis: a network meta-analysis review comparing classical, combined, and liver-first surgical strategies. Journal of Surgical Oncology 111:341−51 doi: 10.1002/jso.23819 |
| [113] |
Hayashi M, Inoue Y, Komeda K, Shimizu T, Asakuma M, et al. 2010. Clinicopathological analysis of recurrence patterns and prognostic factors for survival after hepatectomy for colorectal liver metastasis. BMC Surgery 10:27 doi: 10.1186/1471-2482-10-27 |
| [114] |
Tournigand C, André T, Achille E, Lledo G, Flesh M, et al. 2004. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. Journal of Clinical Oncology 22:229−37 doi: 10.1200/JCO.2004.05.113 |
| [115] |
Pozzo C, Basso M, Cassano A, Quirino M, Schinzari G, et al. 2004. Neoadjuvant treatment of unresectable liver disease with irinotecan and 5-fluorouracil plus folinic acid in colorectal cancer patients. Annals of Oncology 15:933−39 doi: 10.1093/annonc/mdh217 |
| [116] |
Schwarz RE, Berlin JD, Lenz HJ, Nordlinger B, Rubbia-Brandt L, et al. 2013. Systemic cytotoxic and biological therapies of colorectal liver metastases: expert consensus statement. HPB 15:106−15 doi: 10.1111/j.1477-2574.2012.00558.x |
| [117] |
Tang W, Ren L, Liu T, Ye Q, Wei Y, et al. 2020. Bevacizumab plus mFOLFOX6 versus mFOLFOX6 alone as first-line treatment for RAS mutant unresectable colorectal liver-limited metastases: the BECOME randomized controlled trial. Journal of Clinical Oncology 38:3175−84 doi: 10.1200/JCO.20.00174 |
| [118] |
Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, et al. 2021. Colon cancer, Version 2.2021, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network 19:329−59 doi: 10.6004/jnccn.2021.0012 |
| [119] |
Gruenberger T, Bridgewater J, Chau I, García Alfonso P, Rivoire M, et al. 2015. Bevacizumab plus mFOLFOX-6 or FOLFOXIRI in patients with initially unresectable liver metastases from colorectal cancer: the OLIVIA multinational randomised phase II trial. Annals of Oncology 26:702−8 doi: 10.1093/annonc/mdu580 |
| [120] |
Garufi C, Torsello A, Tumolo S, Ettorre GM, Zeuli M, et al. 2010. Cetuximab plus chronomodulated irinotecan, 5-fluorouracil, leucovorin and oxaliplatin as neoadjuvant chemotherapy in colorectal liver metastases: POCHER trial. British Journal of Cancer 103:1542−47 doi: 10.1038/sj.bjc.6605940 |
| [121] |
Masi G, Vasile E, Loupakis F, Cupini S, Fornaro L, et al. 2011. Randomized trial of two induction chemotherapy regimens in metastatic colorectal cancer: an updated analysis. Journal of the National Cancer Institute 103:21−30 doi: 10.1093/jnci/djq456 |
| [122] |
Mouw KW, Goldberg MS, Konstantinopoulos PA, D'Andrea AD. 2017. DNA damage and repair biomarkers of immunotherapy response. Cancer Discovery 7:675−93 doi: 10.1158/2159-8290.CD-17-0226 |
| [123] |
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, et al. 2017. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409−13 doi: 10.1126/science.aan6733 |
| [124] |
Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer working group. 2019. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version). Chinese Journal of Cancer Research 31:117−34 doi: 10.21147/j.issn.1000-9604.2019.01.07 |
| [125] |
Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, et al. 2018. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. Journal of Clinical Oncology 36:773−79 doi: 10.1200/JCO.2017.76.9901 |
| [126] |
Wang DS, Ren C, Li SS, Fong WP, Wu XJ, et al. 2024. Cetuximab plus FOLFOXIRI versus cetuximab plus FOLFOX as conversion regimen in RAS/BRAF wild-type patients with initially unresectable colorectal liver metastases (TRICE trial): a randomized controlled trial. PLoS Medicine 21:e1004389 doi: 10.1371/journal.pmed.1004389 |
| [127] |
Tol J, Punt CJA. 2010. Monoclonal antibodies in the treatment of metastatic colorectal cancer: a review. Clinical Therapeutics 32:437−53 doi: 10.1016/j.clinthera.2010.03.012 |
| [128] |
Cremolini C, Antoniotti C, Rossini D, Lonardi S, Loupakis F, et al. 2020. Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): a multicentre, open-label, phase 3, randomised, controlled trial. The Lancet Oncology 21:497−507 doi: 10.1016/S1470-2045(19)30862-9 |
| [129] |
Sorich MJ, Wiese MD, Rowland A, Kichenadasse G, McKinnon RA, et al. 2015. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Annals of Oncology 26:13−21 doi: 10.1093/annonc/mdu378 |
| [130] |
Ye LC, Liu TS, Ren L, Wei Y, Zhu DX, et al. 2013. Randomized controlled trial of cetuximab plus chemotherapy for patients with KRAS wild-type unresectable colorectal liver-limited metastases. Journal of Clinical Oncology 31:1931−38 doi: 10.1200/JCO.2012.44.8308 |
| [131] |
Wu Z, Huang M, Gong Y, Lin C, Guo W. 2018. BRAF and EGFR inhibitors synergize to increase cytotoxic effects and decrease stem cell capacities in BRAF(V600E)-mutant colorectal cancer cells. Acta Biochimica et Biophysica Sinica 50:355−61 doi: 10.1093/abbs/gmy018 |
| [132] |
Klute KA, Rothe M, Garrett-Mayer E, Mangat PK, Nazemzadeh R, et al. 2022. Cobimetinib plus vemurafenib in patients with colorectal cancer with BRAF mutations: results from the targeted agent and profiling utilization registry (TAPUR) study. JCO Precision Oncology 6:e2200191 doi: 10.1200/PO.22.00191 |
| [133] |
Chen N, He L, Zou Q, Deng H. 2024. HER2 targeted therapy in colorectal cancer: current landscape and future directions. Biochemical Pharmacology 223:116101 doi: 10.1016/j.bcp.2024.116101 |
| [134] |
Katz AW, Carey-Sampson M, Muhs AG, Milano MT, Schell MC, et al. 2007. Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases. International Journal of Radiation Oncology-Biology-Physics 67:793−98 doi: 10.1016/j.ijrobp.2006.10.025 |
| [135] |
Mulcahy MF, Mahvash A, Pracht M, Montazeri AH, Bandula S, et al. 2021. Radioembolization with chemotherapy for colorectal liver metastases: a randomized, open-label, international, multicenter, phase III trial. Journal of Clinical Oncology 39:3897−907 doi: 10.1200/JCO.21.01839 |
| [136] |
Feliberti EC, Wagman LD. 2006. Radiofrequency ablation of liver metastases from colorectal carcinoma. Cancer Control 13:48−51 doi: 10.1177/107327480601300107 |
| [137] |
Levy J, Zuckerman J, Garfinkle R, Acuna SA, Touchette J, et al. 2018. Intra-arterial therapies for unresectable and chemorefractory colorectal cancer liver metastases: a systematic review and meta-analysis. HPB 20:905−15 doi: 10.1016/j.hpb.2018.04.001 |
| [138] |
Karaoglan BB, Oz DK, Araz MS, Akyol C, Utkan G. 2024. Advancements in the management of synchronous colorectal liver metastases: a comprehensive review of surgical, systemic, and local treatment modalities. Current Oncology Reports 26:791−803 doi: 10.1007/s11912-024-01548-z |