[1]

Organisation for Economic Co-operation and Development (OECD). 2022. Global plastics outlook: economic drivers, environmental impacts and policy options. OECD Publishing, Paris. doi: 10.1787/de747aef-en

[2]

Plastics Europe. 2024. Plastics - the fast Facts 2023. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/

[3]

Laskar N, Kumar U. 2019. Plastics and microplastics: a threat to environment. Environmental Technology & Innovation 14:100352

doi: 10.1016/j.eti.2019.100352
[4]

Damayanti D, Saputri DR, Marpaung DSS, Yusupandi F, Sanjaya A, et al. 2022. Current prospects for plastic waste treatment. Polymers 14:3133

doi: 10.3390/polym14153133
[5]

Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Science Advances 3:e1700782

doi: 10.1126/sciadv.1700782
[6]

Lange JP. 2021. Managing plastic waste─sorting, recycling, disposal, and product redesign. ACS Sustainable Chemistry & Engineering 9:15722−38

doi: 10.1021/acssuschemeng.1c05013
[7]

Sardon H, Dove AP. 2018. Plastics recycling with a difference. Science 360:380−81

doi: 10.1126/science.aat4997
[8]

Schyns ZOG, Shaver MP. 2021. Mechanical recycling of packaging plastics: a review. Macromolecular Rapid Communications 42:e2000415

doi: 10.1002/marc.202000415
[9]

Chen S, Hu YH. 2024. Advancements and future directions in waste plastics recycling: from mechanical methods to innovative chemical processes. Chemical Engineering Journal 493:152727

doi: 10.1016/j.cej.2024.152727
[10]

Garcia JM, Robertson ML. 2017. The future of plastics recycling. Science 358:870−72

doi: 10.1126/science.aaq0324
[11]

Klauer RR, Hansen DA, Wu D, Monteiro LMO, Solomon KV, et al. 2024. Biological upcycling of plastics waste. Annual Review of Chemical and Biomolecular Engineering 15:315−42

doi: 10.1146/annurev-chembioeng-100522-115850
[12]

Kumar R, Sadeghi K, Jang J, Seo J. 2023. Mechanical, chemical, and bio-recycling of biodegradable plastics: a review. Science of the Total Environment 882:163446

doi: 10.1016/j.scitotenv.2023.163446
[13]

Rorrer JE, Troyano-Valls C, Beckham GT, Román-Leshkov Y. 2021. Hydrogenolysis of polypropylene and mixed polyolefin plastic waste over Ru/C to produce liquid alkanes. ACS Sustainable Chemistry & Engineering 9:11661−66

[14]

Wang J, Jiang J, Sun Y, Zhong Z, Wang X, et al. 2019. Recycling benzene and ethylbenzene from in-situ catalytic fast pyrolysis of plastic wastes. Energy Conversion and Management 200:112088

doi: 10.1016/j.enconman.2019.112088
[15]

Liu Y, Chandra Akula K, Phani Raj Dandamudi K, Liu Y, Xu M, et al. 2022. Effective depolymerization of polyethylene plastic wastes under hydrothermal and solvothermal liquefaction conditions. Chemical Engineering Journal 446:137238

doi: 10.1016/j.cej.2022.137238
[16]

Gong X, Tong F, Ma F, Zhang Y, Zhou P, et al. 2022. Photoreforming of plastic waste poly (ethylene terephthalate) via in-situ derived CN-CNTs-NiMo hybrids. Applied Catalysis B: Environment and Energy 307:121143

doi: 10.1016/j.apcatb.2022.121143
[17]

Chu M, Liu Y, Lou X, Zhang Q, Chen J. 2022. Rational design of chemical catalysis for plastic recycling. ACS Catalysis 12:4659−79

doi: 10.1021/acscatal.2c01286
[18]

Ebrahimbabaie P, Yousefi K, Pichtel J. 2022. Photocatalytic and biological technologies for elimination of microplastics in water: Current status. Science of the Total Environment 806:150603

doi: 10.1016/j.scitotenv.2021.150603
[19]

Kang H, Washington A, Capobianco MD, Yan X, Cruz VV, et al. 2023. Concentration-dependent photocatalytic upcycling of poly(ethylene terephthalate) plastic waste. ACS Materials Letters 5:3032−41

doi: 10.1021/acsmaterialslett.3c01134
[20]

Jiang S, Yin M, Ren H, Qin Y, Wang W, et al. 2023. Novel CuMgAlTi-LDH photocatalyst for efficient degradation of microplastics under visible light irradiation. Polymers 15:2347

doi: 10.3390/polym15102347
[21]

Li Y, Wan S, Lin C, Gao Y, Lu Y, et al. 2021. Engineering of 2D/2D MoS2/CdxZn1−xS photocatalyst for solar H2 evolution coupled with degradation of plastic in alkaline solution. Solar RRL 5:2000427

doi: 10.1002/solr.202000427
[22]

Zhu C, Wang J, Lv J, Zhu Y, Huang Q, Sun C. 2024. Solar-driven reforming of waste polyester plastics into hydrogen over CdS/NiS catalyst. International Journal of Hydrogen Energy 51:91−103

doi: 10.1016/j.ijhydene.2023.08.064
[23]

Díez AM, Pazos M, Sanromán MÁ, Naranjo HV, Mayer J, et al. 2023. Photocatalytic solid-phase degradation of polyethylene with fluoride-doped titania under low consumption ultraviolet radiation. Journal of Environmental Management 329:117044

doi: 10.1016/j.jenvman.2022.117044
[24]

Cao B, Wan S, Wang Y, Guo H, Ou M, et al. 2022. Highly-efficient visible-light-driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1-xS photocatalyst. Journal of Colloid and Interface Science 605:311−19

doi: 10.1016/j.jcis.2021.07.113
[25]

Rojas-Guerrero CA, Villanueva-Rodríguez M, Guzmán-Mar JL, Hernández-Ramírez A, Cedillo-González EI, et al. 2023. Solar photocatalytic degradation of polyethylene terephthalate nanoplastics: evaluation of the applicability of the TiO2/MIL-100(Fe) composite material. Journal of Environmental Chemical Engineering 11:110415

doi: 10.1016/j.jece.2023.110415
[26]

Filippatos PP, Kelaidis N, Vasilopoulou M, Davazoglou D, Lathiotakis NN, et al. 2019. Defect processes in F and Cl doped anatase TiO2. Scientific Reports 9:19970

doi: 10.1038/s41598-019-55518-8
[27]

Qin J, Dou Y, Wu F, Yao Y, Andersen HR, et al. 2022. In-situ formation of Ag2O in metal-organic framework for light-driven upcycling of microplastics coupled with hydrogen production. Applied Catalysis B: Environmental 319:121940

doi: 10.1016/j.apcatb.2022.121940
[28]

Jia T, Liang X, Zhao K, Guo Q, Zhang Y, et al. 2024. Exploring the photocatalytic degradation mechanism for low-density polyethylene utilizing Bi4Ti3O12 nanoflower catalyst. Journal of Environmental Chemical Engineering 12:113482

doi: 10.1016/j.jece.2024.113482
[29]

Jiao X, Zheng K, Chen Q, Li X, Li Y, et al. 2020. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angewandte Chemie-international Edition 59:15497−501

doi: 10.1002/anie.201915766
[30]

Acuña-Bedoya JD, Luévano-Hipólito E, Cedillo-González EI, Domínguez-Jaimes LP, Hurtado AM, et al. 2021. Boosting visible-light photocatalytic degradation of polystyrene nanoplastics with immobilized CuxO obtained by anodization. Journal of Environmental Chemical Engineering 9:106208

doi: 10.1016/j.jece.2021.106208
[31]

Jeyaraj J, Baskaralingam V, Stalin T, Muthuvel I. 2023. Mechanistic vision on polypropylene microplastics degradation by solar radiation using TiO2 nanoparticle as photocatalyst. Environmental Research 233:116366

doi: 10.1016/j.envres.2023.116366
[32]

Liang Q, Qiao F, Cui X, Hou X. 2019. Controlling the morphology of ZnO structures via low temperature hydrothermal method and their optoelectronic application. Materials Science in Semiconductor Processing 89:154−60

doi: 10.1016/j.mssp.2018.09.007
[33]

Ge J, Zhang Z, Ouyang Z, Shang M, Liu P, et al. 2022. Photocatalytic degradation of (micro)plastics using TiO2-based and other catalysts: Properties, influencing factor, and mechanism. Environmental Research 209:112729

doi: 10.1016/j.envres.2022.112729
[34]

Zhou D, Wang L, Zhang F, Wu J, Wang H, et al. 2022. Feasible degradation of polyethylene terephthalate fiber-based microplastics in alkaline media with Bi2O3@N-TiO2 Z-scheme photocatalytic system. Advanced Sustainable Systems 6:2100516

doi: 10.1002/adsu.202100516
[35]

Du M, Zhang Y, Kang S, Guo X, Ma Y, et al. 2022. Trash to treasure: photoreforming of plastic waste into commodity chemicals and hydrogen over MoS2-tipped CdS nanorods. ACS Catalysis 12:12823−32

doi: 10.1021/acscatal.2c03605
[36]

Uekert T, Kuehnel MF, Wakerley DW, Reisner E. 2018. Plastic waste as a feedstock for solar-driven H2 generation. Energy & Environmental Science 11:2853−57

doi: 10.1039/C8EE01408F
[37]

Zhang S, Li H, Wang L, Liu J, Liang G, et al. 2023. Boosted photoreforming of plastic waste via defect-rich NiPS3 nanosheets. Journal of the American Chemical Society 145:6410−19

doi: 10.1021/jacs.2c13590
[38]

Kumar SG, Kavitha R, Nithya PM. 2020. Tailoring the CdS surface structure for photocatalytic applications. Journal of Environmental Chemical Engineering 8:104313

doi: 10.1016/j.jece.2020.104313
[39]

Cheng L, Xiang Q, Liao Y, Zhang H. 2018. CdS-based photocatalysts. Energy and Environmental Sciences 11:1362−91

doi: 10.1039/C7EE03640J
[40]

Uekert T, Kasap H, Reisner E. 2019. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. Journal of the American Chemical Society 141:15201−10

doi: 10.1021/jacs.9b06872
[41]

Cao R, Zhang MQ, Hu C, Xiao D, Wang M, et al. 2022. Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst. Nature Communications 13:4809

doi: 10.1038/s41467-022-32510-x
[42]

Huang R, Wu J, Zhang M, Liu B, Zheng Z, et al. 2021. Strategies to enhance photocatalytic activity of graphite carbon nitride-based photocatalysts. Materials & Design 210:110040

doi: 10.1016/j.matdes.2021.110040
[43]

Tan SY, Chong WC, Sethupathi S, Pang YL, Sim LC, et al. 2023. Optimisation of aqueous phase low density polyethylene degradation by graphene oxide-zinc oxide photocatalysts. Chemical Engineering Research and Design 190:550−65

doi: 10.1016/j.cherd.2022.12.045
[44]

Prasad C, Liu Q, Tang H, Yuvaraja G, Long J, et al. 2020. An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Molecular Liquids 297:111826

doi: 10.1016/j.molliq.2019.111826
[45]

Edirisooriya EMNT, Senanayake PS, Wang HB, Talipov MR, Xu P, et al. 2023. Photo-reforming and degradation of waste plastics under UV and visible light for H2 production using nanocomposite photocatalysts. Journal of Environmental Chemical Engineering 11:109580

doi: 10.1016/j.jece.2023.109580
[46]

Llorente-García BE, Hernández-López JM, Zaldívar-Cadena AA, Siligardi C, Cedillo-González EI. 2020. First insights into photocatalytic degradation of HDPE and LDPE microplastics by a mesoporous N–TiO2 coating: effect of size and shape of microplastics. Coatings 10:658

doi: 10.3390/coatings10070658
[47]

Ariza-Tarazona MC, Villarreal-Chiu JF, Hernández-López JM, Rivera De la Rosa J, Barbieri V, et al. 2020. Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process. Journal of Hazardous materials 395:122632

doi: 10.1016/j.jhazmat.2020.122632
[48]

Nguyen TKA, Tran-Phu T, Ta XMC, Truong TN, Leverett J, et al. 2023. Understanding structure-activity relationship in Pt-loaded g-C3N4 for efficient solar-photoreforming of polyethylene terephthalate plastic and hydrogen production. Small Methods 8:e2300427

doi: 10.1002/smtd.202300427
[49]

Chang HB, Liu JB, Dong Z, Wang DD, Xin Y, et al. 2021. Enhancement of photocatalytic degradation of polyvinyl chloride plastic with Fe2O3 modified AgNbO3 photocatalyst under visible-light irradiation. Chinese Journal of Structural Chemistry 40:1595−603

doi: 10.14102/j.cnki.0254-5861.2011-3217
[50]

Lai YH, Yeh PW, Jhong MJ, Chuang PC. 2023. Solar-driven hydrogen evolution in alkaline seawater over earth-abundant g-C3N4/CuFeO2 heterojunction photocatalyst using microplastic as a feedstock. Chemical Engineering Journal 475:146413

doi: 10.1016/j.cej.2023.146413
[51]

Wang X, Zhu Z, Jiang J, Li R, Xiong J. 2023. Preparation of heterojunction C3N4/WO3 photocatalyst for degradation of microplastics in water. Chemosphere 337:139206

doi: 10.1016/j.chemosphere.2023.139206
[52]

Xing C, Yu G, Zhou J, Liu Q, Chen T, et al. 2022. Solar energy-driven upcycling of plastic waste on direct Z-scheme heterostructure of V-substituted phosphomolybdic acid/g-C3N4 nanosheets. Applied Catalysis B: Environmental 315:121496

doi: 10.1016/j.apcatb.2022.121496
[53]

Liu F, Zhuang X, Du Z, Dan Y, Huang Y, et al. 2022. Enhanced photocatalytic performance by polarizing ferroelectric KNbO3 for degradation of plastic wastes under mild conditions. Applied Catalysis B: Environmental 318:121897

doi: 10.1016/j.apcatb.2022.121897
[54]

Domínguez-Jaimes LP, Cedillo-González EI, Luévano-Hipólito E, Acuña-Bedoya JD, Hernández-López JM. 2021. Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. Journal of Hazardous Materials 413:125452

doi: 10.1016/j.jhazmat.2021.125452
[55]

Liu M, Xia Y, Zhao W, Jiang R, Fu X, et al. 2023. Modulating oxygen vacancy concentration on Bi4V2O11 nanorods for synergistic photo-driven plastic waste oxidation and CO2 reduction. Journal of Materials Chemistry A 11:12770−76

doi: 10.1039/D2TA09345F
[56]

Sarwan B, Acharya AD, Kaur S, Pare B. 2020. Visible light photocatalytic deterioration of polystyrene plastic using supported BiOCl nanoflower and nanodisk. European Polymer Journal 134:109793

doi: 10.1016/j.eurpolymj.2020.109793
[57]

Jiang L, Yuan X, Pan Y, Liang J, Zeng G, et al. 2017. Doping of graphitic carbon nitride for photocatalysis: a review. Applied Catalysis B: Environmental 217:388−406

doi: 10.1016/j.apcatb.2017.06.003
[58]

Vital-Grappin AD, Ariza-Tarazona MC, Luna-Hernández VM, Villarreal-Chiu JF, Hernández-López JM, et al. 2021. The role of the reactive species involved in the photocatalytic degradation of HDPE microplastics using C,N-TiO2 powders. Polymers 13:999

doi: 10.3390/polym13070999
[59]

Yang H. 2021. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Materials Research Bulletin 142:111406

doi: 10.1016/j.materresbull.2021.111406
[60]

Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. 2017. Heterojunction photocatalysts. Advanced Materials 29:1601694

doi: 10.1002/adma.201601694
[61]

Lu K, Hou F, Fu W, Xue F, Liu M. 2021. Efficient solar photocatalytic hydrogen production using direct Z-scheme heterojunctions. Physical Chemistry Chemical Physics 23:22743−49

doi: 10.1039/D1CP02356J
[62]

Qian Z, Zhang R, Xiao Y, Huang H, Sun Y, et al. 2023. Trace to the source: self-tuning of MOF photocatalysts. Advanced Energy Materials 13:2300086

doi: 10.1002/aenm.202300086
[63]

Kuang P, Low J, Cheng B, Yu J, Fan J. 2020. MXene-based photocatalysts. Journal of Materials Science & Technology 56:18−44

doi: 10.1016/j.jmst.2020.02.037
[64]

Qu W, Qi X, Peng G, Wang M, Song L, et al. 2023. An efficient and recyclable Ni2P–Co2P/ZrO2/C nanofiber photocatalyst for the conversion of plastic waste into H2 and valuable chemicals. Journal of Materials Chemistry C 11:14359−70

doi: 10.1039/D3TC02702C
[65]

Zhou D, Luo H, Zhang F, Wu J, Yang J, et al. 2022. Efficient photocatalytic degradation of the persistent PET fiber-based microplastics over Pt nanoparticles decorated N-doped TiO2 nanoflowers. Advanced Fiber Materials 4:1094−107

doi: 10.1007/s42765-022-00149-4
[66]

Jiang R, Lu G, Yan Z, Liu J, Wu D, et al. 2021. Microplastic degradation by hydroxy-rich bismuth oxychloride. Journal of Hazardous materials 405:124247

doi: 10.1016/j.jhazmat.2020.124247
[67]

He Y, Rehman AU, Xu M, Not CA, Ng AMC, et al. 2023. Photocatalytic degradation of different types of microplastics by TiOx/ZnO tetrapod photocatalysts. Heliyon 9:e22562

doi: 10.1016/j.heliyon.2023.e22562
[68]

Uheida A, Mejía HG, Abdel-Rehim M, Hamd W, Dutta J. 2021. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. Journal of Hazardous materials 406:124299

doi: 10.1016/j.jhazmat.2020.124299
[69]

Nabi I, Bacha AUR, Li K, Cheng H, Wang T, et al. 2020. Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film. iScience 23:101326

doi: 10.1016/j.isci.2020.101326
[70]

Najafi V, Ahmadi E, Ziaee F, Omidian H, Sedaghat H. 2019. Polyaniline-modified TiO2, a highly effective photocatalyst for solid-phase photocatalytic degradation of PVC. Journal of Polymers and the Environment 27:784−93

doi: 10.1007/s10924-018-01363-1
[71]

Venkataramana C, Botsa SM, Shyamala P, Muralikrishna R. 2021. Photocatalytic degradation of polyethylene plastics by NiAl2O4 spinels-synthesis and characterization. Chemosphere 265:129021

doi: 10.1016/j.chemosphere.2020.129021
[72]

Zhang Y, Sun T, Zhang D, Shi Z, Zhang X, et al. 2020. Enhanced photodegradability of PVC plastics film by codoping nano-graphite and TiO2. Polymer Degradation and Stability 181:109332

doi: 10.1016/j.polymdegradstab.2020.109332
[73]

Gou N, Yang W, Gao S, Li Q. 2023. Incorporation of ultrathin porous metal-free graphite carbon nitride nanosheets in polyvinyl chloride for efficient photodegradation. Journal of Hazardous Materials 447:130795

doi: 10.1016/j.jhazmat.2023.130795
[74]

Neidhart EK, Hua M, Peng Z, Kearney LT, Bhat V, et al. 2023. C–H functionalization of polyolefins to access reprocessable polyolefin thermosets. Journal of the American Chemical Society 145:27450−58

doi: 10.1021/jacs.3c08682
[75]

Castilla-Caballero D, Sadak O, Martínez-Díaz J, Martínez-Castro V, Colina-Márquez J, et al. 2022. Solid-state photocatalysis for plastics abatement: A review. Materials Science in Semiconductor Processing 149:106890

doi: 10.1016/j.mssp.2022.106890
[76]

García-Montelongo XL, Martínez-de la Cruz A, Vázquez-Rodríguez S, Torres-Martínez LM. 2014. Photo-oxidative degradation of TiO2/polypropylene films. Materials Research Bulletin 51:56−62

doi: 10.1016/j.materresbull.2013.11.040
[77]

Zheng Y, Fan P, Guo R, Liu X, Zhou X, et al. 2023. Visible light driven reform of wasted plastics to generate green hydrogen over mesoporous ZnIn2S4. RSC Advances 13:12663−69

doi: 10.1039/D3RA02279J
[78]

Wu F, Li C, Dou Y, Zhou J, Jiang T, et al. 2023. Solution plasma synthesis of Pt-decorated Bi12O17Cl2 photocatalysts for efficient upcycling of plastics. Science of the Total Environment 902:165899

doi: 10.1016/j.scitotenv.2023.165899
[79]

Qin J, Dou Y, Zhou J, Candelario VM, Andersen HR, et al. 2023. Photocatalytic valorization of plastic waste over zinc oxide encapsulated in a metal–organic framework. Advanced Functional Materials 33:2214839

doi: 10.1002/adfm.202214839
[80]

Li T, Vijeta A, Casadevall C, Gentleman AS, Euser T, et al. 2022. Bridging plastic recycling and organic catalysis: photocatalytic deconstruction of polystyrene via a C–H oxidation pathway. ACS Catalysis 12:8155−63

doi: 10.1021/acscatal.2c02292
[81]

Nikitas NF, Skolia E, Gkizis PL, Triandafillidi I, Kokotos CG. 2023. Photochemical aerobic upcycling of polystyrene plastics to commodity chemicals using anthraquinone as the photocatalyst. Green Chemistry 25:4750−59

doi: 10.1039/D3GC00986F
[82]

Qin J, Dou Y, Zhou J, Zhao D, Orlander T, et al. 2024. Encapsulation of carbon-nanodots into metal-organic frameworks for boosting photocatalytic upcycling of polyvinyl chloride plastic. Applied Catalysis B: Environmental 341:123355

doi: 10.1016/j.apcatb.2023.123355
[83]

Xu J, Jiao X, Zheng K, Shao W, Zhu S, et al. 2022. Plastics-to-syngas photocatalyzed by Co-Ga2O3 nanosheets. National Science Review 9:nwac011

doi: 10.1093/nsr/nwac011
[84]

Han M, Zhu S, Xia C, Yang B. 2022. Photocatalytic upcycling of poly(ethylene terephthalate) plastic to high-value chemicals. Applied Catalysis B: Environmental 316:121662

doi: 10.1016/j.apcatb.2022.121662
[85]

Ghalta R, Bal R, Srivastava R. 2023. Metal-free photocatalytic transformation of waste polystyrene into valuable chemicals: advancing sustainability through circular economy. Green Chemistry 25:7318−34

doi: 10.1039/D3GC02591H
[86]

Liu CX, Shi R, Ma W, Liu F, Chen Y. 2023. Photoreforming of polyester plastics into added-value chemicals coupled with H2 evolution over a Ni2P/ZnIn2S4 catalyst. Inorganic Chemistry Frontiers 10:4562−68

doi: 10.1039/D3QI00914A
[87]

Wu F, Dou Y, Zhou J, Qin J, Jiang T, et al. 2023. High-entropy (FeCoNiCuZn)WO4 photocatalysts-based fibrous membrane for efficient capturing and upcycling of plastic. Chemical Engineering Journal 470:144134

doi: 10.1016/j.cej.2023.144134
[88]

Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37−38

doi: 10.1038/238037a0
[89]

Wang L, Wang L, Zhao K, Cheng D, Yu W, et al. 2022. Hydrogen production performance of active Ce/N co-doped SrTiO3 for photocatalytic water splitting. International Journal of Hydrogen Energy 47:39047−57

doi: 10.1016/j.ijhydene.2022.09.076
[90]

Li D, Dong Y, Wang G, Jiang P, Zhang F, et al. 2020. Controllable photochemical synthesis of amorphous Ni(OH)2 as hydrogen production cocatalyst using inorganic phosphorous acid as sacrificial agent. Chinese Journal of Catalysis 41:889−97

doi: 10.1016/S1872-2067(19)63499-6
[91]

Li R, Wang F, Lv F, Wang P, Guo X, et al. 2024. Simultaneous hydrogen production and conversion of plastic wastes into valued chemicals over a Z-scheme photocatalyst. International Journal of Hydrogen Energy 51:406−14

doi: 10.1016/j.ijhydene.2023.10.069
[92]

Qi X, Zhu Y, Song L, Peng G, Qu W, et al. 2023. Photocatalytic degradation of PET coupled to green hydrogen generation using flexible Ni2P/TiO2/C nanofiber film catalysts. Applied Catalysis A: General 656:119130

doi: 10.1016/j.apcata.2023.119130
[93]

Meng XY, Li JJ, Liu P, Duan M, Wang J, et al. 2023. Long-term stable hydrogen production from water and lactic acid via visible-light-driven photocatalysis in a porous microreactor. Angewandte Chemie International Edition 62:e202307490

doi: 10.1002/anie.202307490
[94]

Sun DW, Chen KL, Huang JH. 2021. Benzenesulfonyl chloride-incorporated g-C3N4 for photocatalytic hydrogen generation by using the hydrolysate of poly(lactic acid) as sacrificial reagent. Applied Catalysis A: General 628:118397

doi: 10.1016/j.apcata.2021.118397
[95]

Uekert T, Bajada DMA, Schubert DT, Pichler DCM, Reisner PE. 2021. Scalable photocatalyst panels for photoreforming of plastic, biomass and mixed waste in flow. ChemSusChem 14:4190−97

doi: 10.1002/cssc.202002580
[96]

Linley S, Reisner E. 2023. Floating carbon nitride composites for practical solar reforming of pre-treated wastes to hydrogen gas. Advanced Science 10:e2207314

doi: 10.1002/advs.202207314
[97]

Jiang Y, Zhang H, Hong L, Shao J, Zhang B, et al. 2023. An integrated plasma-photocatalytic system for upcycling of polyolefin plastics. ChemSusChem 16:e202300106

doi: 10.1002/cssc.202300106
[98]

Shi C, Kang F, Zhu Y, Teng M, Shi J, et al. 2023. Photoreforming lignocellulosic biomass for hydrogen production: Optimized design of photocatalyst and photocatalytic system. Chemical Engineering Journal 452:138980

doi: 10.1016/j.cej.2022.138980
[99]

Zhao E, Yin P, Du K, Lan N, Wang Q, et al. 2024. Enhancing the internal electric field via twinning for boosting photocatalytic plastic reformation and H2 production. Green Chemistry 26:6779−86

doi: 10.1039/D4GC01067A
[100]

Yun LX, Qiao M, Zhang B, Zhang HT, Wang JX. 2024. Upcycling plastic wastes into high-performance nano-MOFs by efficient neutral hydrolysis for water adsorption and photocatalysis. Journal of Materials Chemistry A 12:19452−61

doi: 10.1039/D4TA02597K
[101]

Allé PH, Garcia-Muñoz P, Adouby K, Keller N, Robert D. 2020. Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by TiO2/β-SiC alveolar foams. Environmental Chemistry Letters 19:1803−8

doi: 10.1007/s10311-020-01099-2
[102]

Wang D, Zhang P, Yan M, Jin L, Du X, et al. 2022. Degradation mechanism and properties of debris of photocatalytically degradable plastics LDPE-TiO2 vary with environments. Polymer Degradation and Stability 195:109806

doi: 10.1016/j.polymdegradstab.2021.109806